Package net.bmahe.genetics4j.neat
Class RecurrentNetwork
java.lang.Object
net.bmahe.genetics4j.neat.RecurrentNetwork
Implements a recurrent neural network evaluator for NEAT chromosomes.
Unlike FeedForwardNetwork, this implementation can execute arbitrary directed graphs that include
recurrent (cyclic) connections. Activations are propagated iteratively until they converge or a maximum number of
iterations is reached, making it suitable for tasks that rely on short-term memory or feedback loops.
-
Field Summary
FieldsModifier and TypeFieldDescriptionprivate final Map<Integer, Set<Connection>> private final List<Connection> private final floatstatic final floatDefault convergence threshold applied to node deltas between iterations.static final floatDefault value assigned to non-input nodes before the first iteration.static final intDefault maximum number of recurrent iterations.private final floatstatic final org.apache.logging.log4j.Loggerprivate final int -
Constructor Summary
ConstructorsConstructorDescriptionRecurrentNetwork(Set<Integer> _inputNodeIndices, Set<Integer> _outputNodeIndices, List<Connection> _connections, Function<Float, Float> _activationFunction) RecurrentNetwork(Set<Integer> _inputNodeIndices, Set<Integer> _outputNodeIndices, List<Connection> _connections, Function<Float, Float> _activationFunction, int _maxIterations, float _convergenceThreshold, float _initialStateValue) -
Method Summary
-
Field Details
-
logger
public static final org.apache.logging.log4j.Logger logger -
DEFAULT_MAX_ITERATIONS
public static final int DEFAULT_MAX_ITERATIONSDefault maximum number of recurrent iterations.- See Also:
-
DEFAULT_CONVERGENCE_THRESHOLD
public static final float DEFAULT_CONVERGENCE_THRESHOLDDefault convergence threshold applied to node deltas between iterations.- See Also:
-
DEFAULT_INITIAL_STATE_VALUE
public static final float DEFAULT_INITIAL_STATE_VALUEDefault value assigned to non-input nodes before the first iteration.- See Also:
-
inputNodeIndices
-
outputNodeIndices
-
connections
-
backwardConnections
-
evaluatedNodeIndices
-
allNodeIndices
-
activationFunction
-
maxIterations
private final int maxIterations -
convergenceThreshold
private final float convergenceThreshold -
initialStateValue
private final float initialStateValue -
nodeState
-
-
Constructor Details
-
RecurrentNetwork
-
RecurrentNetwork
-
-
Method Details
-
compute
-
step
-
resetState
public void resetState() -
buildOutputValues
-