Terminations.java

package net.bmahe.genetics4j.core.termination;

import java.time.Duration;
import java.time.temporal.ChronoUnit;
import java.util.Arrays;
import java.util.Comparator;
import java.util.List;
import java.util.Objects;
import java.util.Optional;

import org.apache.commons.lang3.Validate;

import net.bmahe.genetics4j.core.Genotype;
import net.bmahe.genetics4j.core.spec.AbstractEAConfiguration;

/**
 * Utility class providing factory methods for creating common termination conditions in evolutionary algorithms.
 * 
 * <p>Terminations provides a comprehensive set of pre-built termination criteria that can be used individually or
 * combined to create complex stopping conditions for evolutionary algorithms. Each method returns a {@link Termination}
 * instance that encapsulates the specific logic for determining when evolution should stop.
 * 
 * <p>Available termination criteria include:
 * <ul>
 * <li><strong>Generation-based</strong>: Stop after a maximum number of generations</li>
 * <li><strong>Time-based</strong>: Stop after a specified duration has elapsed</li>
 * <li><strong>Fitness-based</strong>: Stop when fitness reaches certain thresholds</li>
 * <li><strong>Convergence-based</strong>: Stop when fitness stops improving for a period</li>
 * <li><strong>Logical combinations</strong>: Combine multiple criteria with AND/OR logic</li>
 * </ul>
 * 
 * <p>Termination criteria can be combined to create sophisticated stopping conditions:
 * 
 * <pre>{@code
 * // Stop after 100 generations OR when fitness reaches 0.95 OR after 5 minutes
 * Termination<Double> complexTermination = Terminations.or(Terminations.ofMaxGeneration(100),
 * 		Terminations.ofFitnessAtLeast(0.95),
 * 		Terminations.ofMaxTime(Duration.ofMinutes(5)));
 * 
 * // Stop only when BOTH conditions are met: good fitness AND stable evolution
 * Termination<Double> conservativeTermination = Terminations.and(Terminations.ofFitnessAtLeast(0.9),
 * 		Terminations.ofStableFitness(20));
 * 
 * // Simple generation limit for quick experiments
 * Termination<Double> simpleTermination = Terminations.ofMaxGeneration(50);
 * }</pre>
 * 
 * <p>Common usage patterns:
 * <ul>
 * <li><strong>Development and testing</strong>: Use generation limits for quick experimentation</li>
 * <li><strong>Production systems</strong>: Combine time limits with fitness criteria for reliability</li>
 * <li><strong>Research applications</strong>: Use convergence detection to study algorithm behavior</li>
 * <li><strong>Resource-constrained environments</strong>: Use time-based limits for predictable execution</li>
 * </ul>
 * 
 * <p>Design considerations:
 * <ul>
 * <li><strong>Performance</strong>: Termination checks are called frequently; implementations are optimized</li>
 * <li><strong>Thread safety</strong>: Some termination criteria maintain internal state safely</li>
 * <li><strong>Flexibility</strong>: All criteria can be combined using logical operators</li>
 * <li><strong>Reliability</strong>: Include fallback termination criteria to prevent infinite loops</li>
 * </ul>
 * 
 * @see Termination
 * @see net.bmahe.genetics4j.core.EASystem
 * @see net.bmahe.genetics4j.core.spec.EAExecutionContext
 */
public class Terminations {

	/**
	 * Creates a termination condition that stops evolution after a specified number of generations.
	 * 
	 * <p>This is the most common termination criterion, providing a simple upper bound on the number of evolutionary
	 * cycles. The algorithm will terminate when the generation counter reaches or exceeds the specified maximum.
	 * 
	 * @param <T>           the type of fitness values in the evolutionary algorithm
	 * @param maxGeneration the maximum number of generations to run (must be positive)
	 * @return a termination condition that stops after the specified number of generations
	 * @throws IllegalArgumentException if maxGeneration is not positive
	 */
	public static <T extends Comparable<T>> Termination<T> ofMaxGeneration(final long maxGeneration) {
		Validate.isTrue(maxGeneration > 0);

		return new Termination<T>() {

			@Override
			public boolean isDone(final AbstractEAConfiguration<T> eaConfiguration, final long generation,
					final List<Genotype> population, final List<T> fitness) {
				Validate.isTrue(generation >= 0);

				return generation >= maxGeneration;
			}
		};
	}

	/**
	 * Creates a termination condition that stops evolution after a specified time duration.
	 * 
	 * <p>This time-based termination is useful for ensuring predictable execution times, especially in production
	 * environments or when computational resources are limited. The timer starts on the first evaluation and stops when
	 * the elapsed time exceeds the specified duration.
	 * 
	 * @param <T>      the type of fitness values in the evolutionary algorithm
	 * @param duration the maximum time to run the algorithm
	 * @return a termination condition that stops after the specified duration
	 * @throws IllegalArgumentException if duration is null
	 */
	public static <T extends Comparable<T>> Termination<T> ofMaxTime(final Duration duration) {
		Objects.requireNonNull(duration);

		return new Termination<T>() {

			private final long durationNanos = duration.get(ChronoUnit.NANOS);
			private Long startTime = null;

			@Override
			public boolean isDone(final AbstractEAConfiguration<T> eaConfiguration, final long generation,
					final List<Genotype> population, final List<T> fitness) {
				Validate.isTrue(generation >= 0);

				final long nowNanos = System.nanoTime();

				if (startTime == null) {
					startTime = nowNanos;
				}

				return nowNanos - startTime >= durationNanos;
			}
		};
	}

	/**
	 * Creates a termination condition that requires ALL specified conditions to be met.
	 * 
	 * <p>This logical AND operation creates a conservative termination strategy where evolution continues until every
	 * provided termination criterion is satisfied. Useful for ensuring multiple quality conditions are met before
	 * stopping.
	 * 
	 * @param <T>          the type of fitness values in the evolutionary algorithm
	 * @param terminations the termination conditions that must all be satisfied
	 * @return a termination condition that stops only when all conditions are met
	 * @throws IllegalArgumentException if terminations is null or empty
	 */
	@SafeVarargs
	public static <T extends Comparable<T>> Termination<T> and(final Termination<T>... terminations) {
		Objects.requireNonNull(terminations);
		Validate.isTrue(terminations.length > 0);

		return new Termination<T>() {

			@Override
			public boolean isDone(final AbstractEAConfiguration<T> eaConfiguration, final long generation,
					final List<Genotype> population, final List<T> fitness) {
				return Arrays.stream(terminations)
						.allMatch((termination) -> termination.isDone(eaConfiguration, generation, population, fitness));
			}

		};
	}

	/**
	 * Creates a termination condition that stops when ANY of the specified conditions is met.
	 * 
	 * <p>This logical OR operation creates a flexible termination strategy where evolution stops as soon as any one of
	 * the provided criteria is satisfied. Commonly used to provide multiple stopping conditions like time limits,
	 * generation limits, or fitness thresholds.
	 * 
	 * @param <T>          the type of fitness values in the evolutionary algorithm
	 * @param terminations the termination conditions, any of which can trigger stopping
	 * @return a termination condition that stops when any condition is met
	 * @throws IllegalArgumentException if terminations is null or empty
	 */
	@SafeVarargs
	public static <T extends Comparable<T>> Termination<T> or(final Termination<T>... terminations) {
		Objects.requireNonNull(terminations);
		Validate.isTrue(terminations.length > 0);

		return new Termination<T>() {

			@Override
			public boolean isDone(final AbstractEAConfiguration<T> eaConfiguration, final long generation,
					final List<Genotype> population, final List<T> fitness) {
				return Arrays.stream(terminations)
						.anyMatch((termination) -> termination.isDone(eaConfiguration, generation, population, fitness));
			}

		};
	}

	/**
	 * Creates a termination condition that stops when any individual reaches a minimum fitness threshold.
	 * 
	 * <p>This fitness-based termination is useful for maximization problems where you want to stop as soon as a solution
	 * of acceptable quality is found. The condition is satisfied when any individual in the population has a fitness
	 * value greater than or equal to the threshold.
	 * 
	 * @param <T>       the type of fitness values in the evolutionary algorithm
	 * @param threshold the minimum fitness value required to trigger termination
	 * @return a termination condition that stops when fitness reaches the threshold
	 * @throws IllegalArgumentException if threshold is null
	 */
	public static <T extends Comparable<T>> Termination<T> ofFitnessAtLeast(final T threshold) {
		Objects.requireNonNull(threshold);
		return new Termination<T>() {

			@Override
			public boolean isDone(final AbstractEAConfiguration<T> eaConfiguration, final long generation,
					final List<Genotype> population, final List<T> fitness) {
				Validate.isTrue(generation >= 0);

				return fitness.stream()
						.anyMatch((fitnessValue) -> threshold.compareTo(fitnessValue) <= 0);
			}
		};
	}

	/**
	 * Creates a termination condition that stops when any individual reaches a maximum fitness threshold.
	 * 
	 * <p>This fitness-based termination is useful for minimization problems where you want to stop as soon as a solution
	 * of acceptable quality is found. The condition is satisfied when any individual in the population has a fitness
	 * value less than or equal to the threshold.
	 * 
	 * @param <T>       the type of fitness values in the evolutionary algorithm
	 * @param threshold the maximum fitness value required to trigger termination
	 * @return a termination condition that stops when fitness reaches the threshold
	 * @throws IllegalArgumentException if threshold is null
	 */
	public static <T extends Comparable<T>> Termination<T> ofFitnessAtMost(final T threshold) {
		Objects.requireNonNull(threshold);
		return new Termination<T>() {

			@Override
			public boolean isDone(final AbstractEAConfiguration<T> eaConfiguration, final long generation,
					final List<Genotype> population, final List<T> fitness) {
				Validate.isTrue(generation >= 0);

				return fitness.stream()
						.anyMatch((fitnessValue) -> threshold.compareTo(fitnessValue) >= 0);
			}
		};
	}

	/**
	 * Creates a termination condition that stops when fitness stops improving for a specified number of generations.
	 * 
	 * <p>This convergence-based termination detects when the evolutionary algorithm has reached a stable state where
	 * further evolution is unlikely to yield significant improvements. It tracks the best fitness value and stops
	 * evolution if no improvement is observed for the specified number of consecutive generations.
	 * 
	 * <p>This termination criterion is particularly useful for:
	 * <ul>
	 * <li>Preventing unnecessary computation when the algorithm has converged</li>
	 * <li>Automatically adapting to problem difficulty</li>
	 * <li>Research applications studying convergence behavior</li>
	 * </ul>
	 * 
	 * @param <T>                    the type of fitness values in the evolutionary algorithm
	 * @param stableGenerationsCount the number of generations without improvement required to trigger termination
	 * @return a termination condition that stops when fitness plateaus
	 * @throws IllegalArgumentException if stableGenerationsCount is not positive
	 */
	public static <T extends Comparable<T>> Termination<T> ofStableFitness(final int stableGenerationsCount) {
		Validate.isTrue(stableGenerationsCount > 0);

		return new Termination<T>() {

			private long lastImprovedGeneration = -1;
			private T lastBestFitness = null;

			@Override
			public boolean isDone(final AbstractEAConfiguration<T> eaConfiguration, final long generation,
					final List<Genotype> population, final List<T> fitness) {
				Validate.isTrue(generation >= 0);

				final Comparator<T> fitnessComparator = eaConfiguration.fitnessComparator();

				final Optional<T> bestFitnessOpt = fitness.stream()
						.max(fitnessComparator);

				if (lastImprovedGeneration < 0
						|| bestFitnessOpt.map(bestFitness -> fitnessComparator.compare(bestFitness, lastBestFitness) > 0)
								.orElse(false)) {
					lastImprovedGeneration = generation;
					lastBestFitness = bestFitnessOpt.get();
				}

				if (generation - lastImprovedGeneration > stableGenerationsCount) {
					return true;
				}
				return false;
			}
		};
	}
}