1 | package net.bmahe.genetics4j.gpu.opencl.model; | |
2 | ||
3 | import java.util.Set; | |
4 | ||
5 | import org.immutables.value.Value; | |
6 | import org.jocl.cl_device_id; | |
7 | ||
8 | /** | |
9 | * Represents an OpenCL compute device with its capabilities and characteristics for GPU-accelerated evolutionary | |
10 | * algorithms. | |
11 | * | |
12 | * <p>Device encapsulates the properties and capabilities of an OpenCL compute device (GPU, CPU, or accelerator) that | |
13 | * can be used for fitness evaluation in evolutionary algorithms. This information is essential for device selection, | |
14 | * kernel optimization, and workload configuration to achieve optimal performance. | |
15 | * | |
16 | * <p>Key device characteristics include: | |
17 | * <ul> | |
18 | * <li><strong>Device identification</strong>: Name, vendor, and version information</li> | |
19 | * <li><strong>Compute capabilities</strong>: Number of compute units and maximum work group sizes</li> | |
20 | * <li><strong>Memory hierarchy</strong>: Global, local, and constant memory sizes and characteristics</li> | |
21 | * <li><strong>Processing features</strong>: Vector width preferences, image support, and built-in kernels</li> | |
22 | * <li><strong>Performance metrics</strong>: Clock frequency and execution capabilities</li> | |
23 | * </ul> | |
24 | * | |
25 | * <p>Device selection considerations for evolutionary algorithms: | |
26 | * <ul> | |
27 | * <li><strong>Device type</strong>: GPU devices typically provide highest parallelism for large populations</li> | |
28 | * <li><strong>Compute units</strong>: More compute units allow better utilization of large populations</li> | |
29 | * <li><strong>Work group sizes</strong>: Must accommodate the parallelism patterns of fitness kernels</li> | |
30 | * <li><strong>Memory capacity</strong>: Must be sufficient for population data and intermediate results</li> | |
31 | * <li><strong>Vector operations</strong>: Vector width preferences can optimize numerical computations</li> | |
32 | * </ul> | |
33 | * | |
34 | * <p>Common device filtering patterns: | |
35 | * | |
36 | * <pre>{@code | |
37 | * // Select GPU devices with sufficient parallel processing capability | |
38 | * Predicate<Device> gpuFilter = device -> device.deviceType() | |
39 | * .contains(DeviceType.GPU) && device.maxComputeUnits() >= 8; | |
40 | * | |
41 | * // Select devices with large work group support for population processing | |
42 | * Predicate<Device> workGroupFilter = device -> device.maxWorkGroupSize() >= 256; | |
43 | * | |
44 | * // Select devices with high clock frequency for compute-intensive fitness | |
45 | * Predicate<Device> performanceFilter = device -> device.maxClockFrequency() >= 1000; // MHz | |
46 | * | |
47 | * // Select devices that support floating-point vector operations | |
48 | * Predicate<Device> vectorFilter = device -> device.preferredVectorWidthFloat() >= 4; | |
49 | * | |
50 | * // Comprehensive filter for evolutionary algorithm suitability | |
51 | * Predicate<Device> eaOptimizedFilter = device -> device.deviceType() | |
52 | * .contains(DeviceType.GPU) && device.maxComputeUnits() >= 4 && device.maxWorkGroupSize() >= 128 | |
53 | * && device.preferredVectorWidthFloat() >= 2; | |
54 | * }</pre> | |
55 | * | |
56 | * <p>Performance optimization using device information: | |
57 | * <ul> | |
58 | * <li><strong>Work group sizing</strong>: Configure kernel work groups based on {@link #maxWorkGroupSize()}</li> | |
59 | * <li><strong>Parallel dispatch</strong>: Scale parallelism based on {@link #maxComputeUnits()}</li> | |
60 | * <li><strong>Vector operations</strong>: Optimize data layouts for {@link #preferredVectorWidthFloat()}</li> | |
61 | * <li><strong>Memory access patterns</strong>: Design kernels considering memory hierarchy characteristics</li> | |
62 | * </ul> | |
63 | * | |
64 | * <p>Device capability assessment workflow: | |
65 | * <ol> | |
66 | * <li><strong>Device discovery</strong>: Enumerate devices from selected platforms</li> | |
67 | * <li><strong>Capability query</strong>: Read device properties from OpenCL runtime</li> | |
68 | * <li><strong>Model creation</strong>: Create device objects with discovered capabilities</li> | |
69 | * <li><strong>Filtering</strong>: Apply user-defined predicates to select suitable devices</li> | |
70 | * <li><strong>Context creation</strong>: Create OpenCL contexts for selected devices</li> | |
71 | * </ol> | |
72 | * | |
73 | * <p>Common device types in evolutionary computation: | |
74 | * <ul> | |
75 | * <li><strong>GPU devices</strong>: Provide massive parallelism for large population fitness evaluation</li> | |
76 | * <li><strong>CPU devices</strong>: Offer good sequential performance and large memory capacity</li> | |
77 | * <li><strong>Accelerator devices</strong>: Specialized hardware for specific computational patterns</li> | |
78 | * <li><strong>Custom devices</strong>: FPGA or other specialized compute devices</li> | |
79 | * </ul> | |
80 | * | |
81 | * <p>Error handling and compatibility: | |
82 | * <ul> | |
83 | * <li><strong>Device availability</strong>: Devices may become unavailable during execution</li> | |
84 | * <li><strong>Capability validation</strong>: Ensure device supports required kernel features</li> | |
85 | * <li><strong>Memory constraints</strong>: Validate device memory is sufficient for population size</li> | |
86 | * <li><strong>Work group limits</strong>: Ensure kernels respect device work group size limits</li> | |
87 | * </ul> | |
88 | * | |
89 | * @see Platform | |
90 | * @see DeviceType | |
91 | * @see net.bmahe.genetics4j.gpu.spec.GPUEAExecutionContext#deviceFilters() | |
92 | * @see net.bmahe.genetics4j.gpu.opencl.DeviceUtils | |
93 | */ | |
94 | @Value.Immutable | |
95 | public interface Device { | |
96 | ||
97 | /** | |
98 | * Returns the native OpenCL device identifier. | |
99 | * | |
100 | * @return the OpenCL device ID for low-level operations | |
101 | */ | |
102 | cl_device_id deviceId(); | |
103 | ||
104 | /** | |
105 | * Returns the device name provided by the vendor. | |
106 | * | |
107 | * @return the human-readable device name (e.g., "GeForce RTX 3080", "Intel Core i7") | |
108 | */ | |
109 | String name(); | |
110 | ||
111 | /** | |
112 | * Returns the device vendor name. | |
113 | * | |
114 | * @return the vendor name (e.g., "NVIDIA Corporation", "Intel", "AMD") | |
115 | */ | |
116 | String vendor(); | |
117 | ||
118 | /** | |
119 | * Returns the OpenCL version supported by this device. | |
120 | * | |
121 | * @return the device OpenCL version string (e.g., "OpenCL 2.1") | |
122 | */ | |
123 | String deviceVersion(); | |
124 | ||
125 | /** | |
126 | * Returns the device driver version. | |
127 | * | |
128 | * @return the driver version string provided by the vendor | |
129 | */ | |
130 | String driverVersion(); | |
131 | ||
132 | /** | |
133 | * Returns the maximum configured clock frequency of the device compute units in MHz. | |
134 | * | |
135 | * @return the maximum clock frequency in megahertz | |
136 | */ | |
137 | int maxClockFrequency(); | |
138 | ||
139 | /** | |
140 | * Returns the set of device types that classify this device. | |
141 | * | |
142 | * @return set of device types (e.g., GPU, CPU, ACCELERATOR) | |
143 | */ | |
144 | Set<DeviceType> deviceType(); | |
145 | ||
146 | /** | |
147 | * Returns the set of built-in kernel names available on this device. | |
148 | * | |
149 | * @return set of built-in kernel names provided by the device | |
150 | */ | |
151 | Set<String> builtInKernels(); | |
152 | ||
153 | /** | |
154 | * Returns the number of parallel compute units on the device. | |
155 | * | |
156 | * <p>Compute units represent the primary parallel processing elements and directly impact the device's ability to | |
157 | * execute work groups concurrently. | |
158 | * | |
159 | * @return the number of parallel compute units available | |
160 | */ | |
161 | int maxComputeUnits(); | |
162 | ||
163 | /** | |
164 | * Returns the maximum number of work-item dimensions supported by the device. | |
165 | * | |
166 | * @return the maximum number of dimensions for work-item indexing | |
167 | */ | |
168 | int maxWorkItemDimensions(); | |
169 | ||
170 | /** | |
171 | * Returns the maximum number of work-items in a work group for kernel execution. | |
172 | * | |
173 | * <p>This limit constrains the local work group size that can be used when launching kernels on this device. Larger | |
174 | * work groups can improve memory locality and reduce synchronization overhead. | |
175 | * | |
176 | * @return the maximum work group size for kernel execution | |
177 | */ | |
178 | long maxWorkGroupSize(); | |
179 | ||
180 | /** | |
181 | * Returns the maximum number of work-items in each dimension of a work group. | |
182 | * | |
183 | * <p>The array contains the maximum work-item count for each dimension, providing more granular control over work | |
184 | * group configuration than the overall {@link #maxWorkGroupSize()} limit. | |
185 | * | |
186 | * @return array of maximum work-item counts per dimension | |
187 | */ | |
188 | long[] maxWorkItemSizes(); | |
189 | ||
190 | /** | |
191 | * Returns whether the device supports image objects in kernels. | |
192 | * | |
193 | * @return true if the device supports image processing operations | |
194 | */ | |
195 | boolean imageSupport(); | |
196 | ||
197 | /** | |
198 | * Returns the preferred vector width for float operations. | |
199 | * | |
200 | * <p>This indicates the optimal vector width for floating-point operations on this device, which can be used to | |
201 | * optimize numerical computations in fitness evaluation kernels. | |
202 | * | |
203 | * @return the preferred vector width for float operations | |
204 | */ | |
205 | int preferredVectorWidthFloat(); | |
206 | ||
207 | /** | |
208 | * Creates a new builder for constructing Device instances. | |
209 | * | |
210 | * @return a new builder for creating device objects | |
211 | */ | |
212 | static ImmutableDevice.Builder builder() { | |
213 |
2
1. builder : replaced return value with null for net/bmahe/genetics4j/gpu/opencl/model/Device::builder → NO_COVERAGE 2. builder : removed call to net/bmahe/genetics4j/gpu/opencl/model/ImmutableDevice::builder → NO_COVERAGE |
return ImmutableDevice.builder(); |
214 | } | |
215 | } | |
Mutations | ||
213 |
1.1 2.2 |