Device.java

1
package net.bmahe.genetics4j.gpu.opencl.model;
2
3
import java.util.Set;
4
5
import org.immutables.value.Value;
6
import org.jocl.cl_device_id;
7
8
/**
9
 * Represents an OpenCL compute device with its capabilities and characteristics for GPU-accelerated evolutionary
10
 * algorithms.
11
 * 
12
 * <p>Device encapsulates the properties and capabilities of an OpenCL compute device (GPU, CPU, or accelerator) that
13
 * can be used for fitness evaluation in evolutionary algorithms. This information is essential for device selection,
14
 * kernel optimization, and workload configuration to achieve optimal performance.
15
 * 
16
 * <p>Key device characteristics include:
17
 * <ul>
18
 * <li><strong>Device identification</strong>: Name, vendor, and version information</li>
19
 * <li><strong>Compute capabilities</strong>: Number of compute units and maximum work group sizes</li>
20
 * <li><strong>Memory hierarchy</strong>: Global, local, and constant memory sizes and characteristics</li>
21
 * <li><strong>Processing features</strong>: Vector width preferences, image support, and built-in kernels</li>
22
 * <li><strong>Performance metrics</strong>: Clock frequency and execution capabilities</li>
23
 * </ul>
24
 * 
25
 * <p>Device selection considerations for evolutionary algorithms:
26
 * <ul>
27
 * <li><strong>Device type</strong>: GPU devices typically provide highest parallelism for large populations</li>
28
 * <li><strong>Compute units</strong>: More compute units allow better utilization of large populations</li>
29
 * <li><strong>Work group sizes</strong>: Must accommodate the parallelism patterns of fitness kernels</li>
30
 * <li><strong>Memory capacity</strong>: Must be sufficient for population data and intermediate results</li>
31
 * <li><strong>Vector operations</strong>: Vector width preferences can optimize numerical computations</li>
32
 * </ul>
33
 * 
34
 * <p>Common device filtering patterns:
35
 * 
36
 * <pre>{@code
37
 * // Select GPU devices with sufficient parallel processing capability
38
 * Predicate<Device> gpuFilter = device -> device.deviceType()
39
 * 		.contains(DeviceType.GPU) && device.maxComputeUnits() >= 8;
40
 * 
41
 * // Select devices with large work group support for population processing
42
 * Predicate<Device> workGroupFilter = device -> device.maxWorkGroupSize() >= 256;
43
 * 
44
 * // Select devices with high clock frequency for compute-intensive fitness
45
 * Predicate<Device> performanceFilter = device -> device.maxClockFrequency() >= 1000; // MHz
46
 * 
47
 * // Select devices that support floating-point vector operations
48
 * Predicate<Device> vectorFilter = device -> device.preferredVectorWidthFloat() >= 4;
49
 * 
50
 * // Comprehensive filter for evolutionary algorithm suitability
51
 * Predicate<Device> eaOptimizedFilter = device -> device.deviceType()
52
 * 		.contains(DeviceType.GPU) && device.maxComputeUnits() >= 4 && device.maxWorkGroupSize() >= 128
53
 * 		&& device.preferredVectorWidthFloat() >= 2;
54
 * }</pre>
55
 * 
56
 * <p>Performance optimization using device information:
57
 * <ul>
58
 * <li><strong>Work group sizing</strong>: Configure kernel work groups based on {@link #maxWorkGroupSize()}</li>
59
 * <li><strong>Parallel dispatch</strong>: Scale parallelism based on {@link #maxComputeUnits()}</li>
60
 * <li><strong>Vector operations</strong>: Optimize data layouts for {@link #preferredVectorWidthFloat()}</li>
61
 * <li><strong>Memory access patterns</strong>: Design kernels considering memory hierarchy characteristics</li>
62
 * </ul>
63
 * 
64
 * <p>Device capability assessment workflow:
65
 * <ol>
66
 * <li><strong>Device discovery</strong>: Enumerate devices from selected platforms</li>
67
 * <li><strong>Capability query</strong>: Read device properties from OpenCL runtime</li>
68
 * <li><strong>Model creation</strong>: Create device objects with discovered capabilities</li>
69
 * <li><strong>Filtering</strong>: Apply user-defined predicates to select suitable devices</li>
70
 * <li><strong>Context creation</strong>: Create OpenCL contexts for selected devices</li>
71
 * </ol>
72
 * 
73
 * <p>Common device types in evolutionary computation:
74
 * <ul>
75
 * <li><strong>GPU devices</strong>: Provide massive parallelism for large population fitness evaluation</li>
76
 * <li><strong>CPU devices</strong>: Offer good sequential performance and large memory capacity</li>
77
 * <li><strong>Accelerator devices</strong>: Specialized hardware for specific computational patterns</li>
78
 * <li><strong>Custom devices</strong>: FPGA or other specialized compute devices</li>
79
 * </ul>
80
 * 
81
 * <p>Error handling and compatibility:
82
 * <ul>
83
 * <li><strong>Device availability</strong>: Devices may become unavailable during execution</li>
84
 * <li><strong>Capability validation</strong>: Ensure device supports required kernel features</li>
85
 * <li><strong>Memory constraints</strong>: Validate device memory is sufficient for population size</li>
86
 * <li><strong>Work group limits</strong>: Ensure kernels respect device work group size limits</li>
87
 * </ul>
88
 * 
89
 * @see Platform
90
 * @see DeviceType
91
 * @see net.bmahe.genetics4j.gpu.spec.GPUEAExecutionContext#deviceFilters()
92
 * @see net.bmahe.genetics4j.gpu.opencl.DeviceUtils
93
 */
94
@Value.Immutable
95
public interface Device {
96
97
	/**
98
	 * Returns the native OpenCL device identifier.
99
	 * 
100
	 * @return the OpenCL device ID for low-level operations
101
	 */
102
	cl_device_id deviceId();
103
104
	/**
105
	 * Returns the device name provided by the vendor.
106
	 * 
107
	 * @return the human-readable device name (e.g., "GeForce RTX 3080", "Intel Core i7")
108
	 */
109
	String name();
110
111
	/**
112
	 * Returns the device vendor name.
113
	 * 
114
	 * @return the vendor name (e.g., "NVIDIA Corporation", "Intel", "AMD")
115
	 */
116
	String vendor();
117
118
	/**
119
	 * Returns the OpenCL version supported by this device.
120
	 * 
121
	 * @return the device OpenCL version string (e.g., "OpenCL 2.1")
122
	 */
123
	String deviceVersion();
124
125
	/**
126
	 * Returns the device driver version.
127
	 * 
128
	 * @return the driver version string provided by the vendor
129
	 */
130
	String driverVersion();
131
132
	/**
133
	 * Returns the maximum configured clock frequency of the device compute units in MHz.
134
	 * 
135
	 * @return the maximum clock frequency in megahertz
136
	 */
137
	int maxClockFrequency();
138
139
	/**
140
	 * Returns the set of device types that classify this device.
141
	 * 
142
	 * @return set of device types (e.g., GPU, CPU, ACCELERATOR)
143
	 */
144
	Set<DeviceType> deviceType();
145
146
	/**
147
	 * Returns the set of built-in kernel names available on this device.
148
	 * 
149
	 * @return set of built-in kernel names provided by the device
150
	 */
151
	Set<String> builtInKernels();
152
153
	/**
154
	 * Returns the number of parallel compute units on the device.
155
	 * 
156
	 * <p>Compute units represent the primary parallel processing elements and directly impact the device's ability to
157
	 * execute work groups concurrently.
158
	 * 
159
	 * @return the number of parallel compute units available
160
	 */
161
	int maxComputeUnits();
162
163
	/**
164
	 * Returns the maximum number of work-item dimensions supported by the device.
165
	 * 
166
	 * @return the maximum number of dimensions for work-item indexing
167
	 */
168
	int maxWorkItemDimensions();
169
170
	/**
171
	 * Returns the maximum number of work-items in a work group for kernel execution.
172
	 * 
173
	 * <p>This limit constrains the local work group size that can be used when launching kernels on this device. Larger
174
	 * work groups can improve memory locality and reduce synchronization overhead.
175
	 * 
176
	 * @return the maximum work group size for kernel execution
177
	 */
178
	long maxWorkGroupSize();
179
180
	/**
181
	 * Returns the maximum number of work-items in each dimension of a work group.
182
	 * 
183
	 * <p>The array contains the maximum work-item count for each dimension, providing more granular control over work
184
	 * group configuration than the overall {@link #maxWorkGroupSize()} limit.
185
	 * 
186
	 * @return array of maximum work-item counts per dimension
187
	 */
188
	long[] maxWorkItemSizes();
189
190
	/**
191
	 * Returns whether the device supports image objects in kernels.
192
	 * 
193
	 * @return true if the device supports image processing operations
194
	 */
195
	boolean imageSupport();
196
197
	/**
198
	 * Returns the preferred vector width for float operations.
199
	 * 
200
	 * <p>This indicates the optimal vector width for floating-point operations on this device, which can be used to
201
	 * optimize numerical computations in fitness evaluation kernels.
202
	 * 
203
	 * @return the preferred vector width for float operations
204
	 */
205
	int preferredVectorWidthFloat();
206
207
	/**
208
	 * Creates a new builder for constructing Device instances.
209
	 * 
210
	 * @return a new builder for creating device objects
211
	 */
212
	static ImmutableDevice.Builder builder() {
213 2 1. builder : replaced return value with null for net/bmahe/genetics4j/gpu/opencl/model/Device::builder → NO_COVERAGE
2. builder : removed call to net/bmahe/genetics4j/gpu/opencl/model/ImmutableDevice::builder → NO_COVERAGE
		return ImmutableDevice.builder();
214
	}
215
}

Mutations

213

1.1
Location : builder
Killed by : none
replaced return value with null for net/bmahe/genetics4j/gpu/opencl/model/Device::builder → NO_COVERAGE

2.2
Location : builder
Killed by : none
removed call to net/bmahe/genetics4j/gpu/opencl/model/ImmutableDevice::builder → NO_COVERAGE

Active mutators

Tests examined


Report generated by PIT 1.20.3