KernelInfo.java

1
package net.bmahe.genetics4j.gpu.opencl.model;
2
3
import org.immutables.value.Value;
4
5
/**
6
 * Represents kernel-specific execution characteristics and resource requirements for an OpenCL kernel on a specific
7
 * device.
8
 * 
9
 * <p>KernelInfo encapsulates the device-specific compilation and execution characteristics of an OpenCL kernel,
10
 * providing essential information for optimal work group configuration and resource allocation in GPU-accelerated
11
 * evolutionary algorithms. This information is determined at kernel compilation time and varies by device.
12
 * 
13
 * <p>Key kernel characteristics include:
14
 * <ul>
15
 * <li><strong>Work group constraints</strong>: Maximum and preferred work group sizes for efficient execution</li>
16
 * <li><strong>Memory usage</strong>: Local and private memory requirements per work-item</li>
17
 * <li><strong>Performance optimization</strong>: Preferred work group size multiples for optimal resource
18
 * utilization</li>
19
 * <li><strong>Resource validation</strong>: Constraints for validating kernel launch parameters</li>
20
 * </ul>
21
 * 
22
 * <p>Kernel optimization considerations for evolutionary algorithms:
23
 * <ul>
24
 * <li><strong>Work group sizing</strong>: Configure launch parameters within device-specific limits</li>
25
 * <li><strong>Memory allocation</strong>: Ensure sufficient local memory for parallel fitness evaluation</li>
26
 * <li><strong>Performance tuning</strong>: Align work group sizes with preferred multiples</li>
27
 * <li><strong>Resource planning</strong>: Account for per-work-item memory requirements</li>
28
 * </ul>
29
 * 
30
 * <p>Common usage patterns for kernel configuration:
31
 * 
32
 * <pre>{@code
33
 * // Query kernel information after compilation
34
 * KernelInfo kernelInfo = kernelInfoReader.read(deviceId, kernel, "fitness_evaluation");
35
 * 
36
 * // Configure work group size within device limits
37
 * long maxWorkGroupSize = Math.min(kernelInfo.workGroupSize(), device.maxWorkGroupSize());
38
 * 
39
 * // Optimize for preferred work group size multiple
40
 * long preferredMultiple = kernelInfo.preferredWorkGroupSizeMultiple();
41
 * long optimalWorkGroupSize = (maxWorkGroupSize / preferredMultiple) * preferredMultiple;
42
 * 
43
 * // Validate memory requirements for population size
44
 * long populationSize = 1000;
45
 * long totalLocalMem = kernelInfo.localMemSize() * optimalWorkGroupSize;
46
 * long totalPrivateMem = kernelInfo.privateMemSize() * populationSize;
47
 * 
48
 * // Configure kernel execution with validated parameters
49
 * clEnqueueNDRangeKernel(commandQueue,
50
 * 		kernel,
51
 * 		1,
52
 * 		null,
53
 * 		new long[] { populationSize },
54
 * 		new long[] { optimalWorkGroupSize },
55
 * 		0,
56
 * 		null,
57
 * 		null);
58
 * }</pre>
59
 * 
60
 * <p>Performance optimization workflow:
61
 * <ol>
62
 * <li><strong>Kernel compilation</strong>: Compile kernel for target device</li>
63
 * <li><strong>Information query</strong>: Read kernel-specific execution characteristics</li>
64
 * <li><strong>Work group optimization</strong>: Calculate optimal work group size based on preferences</li>
65
 * <li><strong>Memory validation</strong>: Ensure memory requirements fit within device limits</li>
66
 * <li><strong>Launch configuration</strong>: Configure kernel execution with optimized parameters</li>
67
 * </ol>
68
 * 
69
 * <p>Memory management considerations:
70
 * <ul>
71
 * <li><strong>Local memory</strong>: Shared among work-items in the same work group</li>
72
 * <li><strong>Private memory</strong>: Individual memory per work-item</li>
73
 * <li><strong>Total allocation</strong>: Sum of all work-items' memory requirements</li>
74
 * <li><strong>Device limits</strong>: Validate against device memory constraints</li>
75
 * </ul>
76
 * 
77
 * <p>Error handling and validation:
78
 * <ul>
79
 * <li><strong>Work group limits</strong>: Ensure launch parameters don't exceed kernel limits</li>
80
 * <li><strong>Memory constraints</strong>: Validate total memory usage against device capabilities</li>
81
 * <li><strong>Performance degradation</strong>: Monitor for suboptimal work group configurations</li>
82
 * <li><strong>Resource conflicts</strong>: Handle multiple kernels competing for device resources</li>
83
 * </ul>
84
 * 
85
 * @see Device
86
 * @see net.bmahe.genetics4j.gpu.opencl.KernelInfoReader
87
 * @see net.bmahe.genetics4j.gpu.opencl.KernelInfoUtils
88
 */
89
@Value.Immutable
90
public interface KernelInfo {
91
92
	/**
93
	 * Returns the name of the kernel function.
94
	 * 
95
	 * @return the kernel function name as specified in the OpenCL program
96
	 */
97
	String name();
98
99
	/**
100
	 * Returns the maximum work group size that can be used when executing this kernel on the device.
101
	 * 
102
	 * <p>This value represents the maximum number of work-items that can be in a work group when executing this specific
103
	 * kernel on the target device. It may be smaller than the device's general maximum work group size due to
104
	 * kernel-specific resource requirements.
105
	 * 
106
	 * @return the maximum work group size for this kernel
107
	 */
108
	long workGroupSize();
109
110
	/**
111
	 * Returns the preferred work group size multiple for optimal kernel execution performance.
112
	 * 
113
	 * <p>For optimal performance, the work group size should be a multiple of this value. This represents the native
114
	 * vector width or wavefront size of the device and helps achieve better resource utilization and memory coalescing.
115
	 * 
116
	 * @return the preferred work group size multiple for performance optimization
117
	 */
118
	long preferredWorkGroupSizeMultiple();
119
120
	/**
121
	 * Returns the amount of local memory in bytes used by this kernel.
122
	 * 
123
	 * <p>Local memory is shared among all work-items in a work group and includes both statically allocated local
124
	 * variables and dynamically allocated local memory passed as kernel arguments. This value is used to validate that
125
	 * the total local memory usage doesn't exceed the device's local memory capacity.
126
	 * 
127
	 * @return the local memory usage in bytes per work group
128
	 */
129
	long localMemSize();
130
131
	/**
132
	 * Returns the minimum amount of private memory in bytes used by each work-item.
133
	 * 
134
	 * <p>Private memory is individual to each work-item and includes local variables, function call stacks, and other
135
	 * per-work-item data. This value helps estimate the total memory footprint when launching kernels with large work
136
	 * group sizes.
137
	 * 
138
	 * @return the private memory usage in bytes per work-item
139
	 */
140
	long privateMemSize();
141
142
	/**
143
	 * Creates a new builder for constructing KernelInfo instances.
144
	 * 
145
	 * @return a new builder for creating kernel information objects
146
	 */
147
	static ImmutableKernelInfo.Builder builder() {
148 2 1. builder : replaced return value with null for net/bmahe/genetics4j/gpu/opencl/model/KernelInfo::builder → NO_COVERAGE
2. builder : removed call to net/bmahe/genetics4j/gpu/opencl/model/ImmutableKernelInfo::builder → NO_COVERAGE
		return ImmutableKernelInfo.builder();
149
	}
150
}

Mutations

148

1.1
Location : builder
Killed by : none
replaced return value with null for net/bmahe/genetics4j/gpu/opencl/model/KernelInfo::builder → NO_COVERAGE

2.2
Location : builder
Killed by : none
removed call to net/bmahe/genetics4j/gpu/opencl/model/ImmutableKernelInfo::builder → NO_COVERAGE

Active mutators

Tests examined


Report generated by PIT 1.20.3