GPUEAExecutionContext.java

1
package net.bmahe.genetics4j.gpu.spec;
2
3
import java.util.function.Predicate;
4
5
import org.immutables.value.Value;
6
7
import net.bmahe.genetics4j.core.spec.AbstractEAExecutionContext;
8
import net.bmahe.genetics4j.gpu.opencl.model.Device;
9
import net.bmahe.genetics4j.gpu.opencl.model.Platform;
10
11
/**
12
 * GPU-specific execution context that extends the core EA framework with OpenCL device selection capabilities.
13
 * 
14
 * <p>GPUEAExecutionContext extends {@link AbstractEAExecutionContext} to include GPU-specific execution
15
 * parameters required for OpenCL device discovery and selection. This context combines traditional EA
16
 * execution settings (population size, termination criteria) with GPU-specific device filtering capabilities.
17
 * 
18
 * <p>Key GPU-specific additions:
19
 * <ul>
20
 * <li><strong>Platform filtering</strong>: Predicates for selecting appropriate OpenCL platforms</li>
21
 * <li><strong>Device filtering</strong>: Predicates for selecting compatible OpenCL devices</li>
22
 * <li><strong>Multi-device support</strong>: Automatic discovery and utilization of multiple GPU devices</li>
23
 * <li><strong>Hardware abstraction</strong>: Device-agnostic configuration with runtime device selection</li>
24
 * </ul>
25
 * 
26
 * <p>Device selection workflow:
27
 * <ol>
28
 * <li><strong>Platform discovery</strong>: Enumerate all available OpenCL platforms</li>
29
 * <li><strong>Platform filtering</strong>: Apply platform predicates to select compatible platforms</li>
30
 * <li><strong>Device enumeration</strong>: Discover devices for each selected platform</li>
31
 * <li><strong>Device filtering</strong>: Apply device predicates to select suitable devices</li>
32
 * <li><strong>Context creation</strong>: Create OpenCL contexts for selected devices</li>
33
 * </ol>
34
 * 
35
 * <p>Common filtering patterns:
36
 * <pre>{@code
37
 * // Select only GPU devices with sufficient memory
38
 * GPUEAExecutionContext<Double> context = GPUEAExecutionContext.<Double>builder()
39
 *     .populationSize(2000)
40
 *     .termination(Generations.of(100))
41
 *     
42
 *     // Platform filtering - prefer full OpenCL profiles
43
 *     .platformFilter(platform -> platform.profile() == PlatformProfile.FULL_PROFILE)
44
 *     
45
 *     // Device filtering - GPU devices with at least 2GB memory
46
 *     .deviceFilter(device -> 
47
 *         device.type() == DeviceType.GPU && 
48
 *         device.globalMemSize() >= 2L * 1024 * 1024 * 1024)
49
 *     
50
 *     .build();
51
 * 
52
 * // Select any available compute device (GPUs or CPUs)
53
 * GPUEAExecutionContext<Double> flexibleContext = GPUEAExecutionContext.<Double>builder()
54
 *     .populationSize(1000)
55
 *     .termination(FitnessTarget.of(0.95))
56
 *     
57
 *     // Accept any platform
58
 *     .platformFilter(platform -> true)
59
 *     
60
 *     // Prefer GPUs but accept CPUs as fallback
61
 *     .deviceFilter(device -> 
62
 *         device.type() == DeviceType.GPU || 
63
 *         device.type() == DeviceType.CPU)
64
 *     
65
 *     .build();
66
 * }</pre>
67
 * 
68
 * <p>Performance optimization through device selection:
69
 * <ul>
70
 * <li><strong>Compute capability</strong>: Filter devices by OpenCL version and feature support</li>
71
 * <li><strong>Memory capacity</strong>: Ensure devices have sufficient memory for population size</li>
72
 * <li><strong>Compute units</strong>: Prefer devices with more parallel processing units</li>
73
 * <li><strong>Memory bandwidth</strong>: Select devices optimized for data-intensive operations</li>
74
 * </ul>
75
 * 
76
 * <p>Multi-device strategies:
77
 * <ul>
78
 * <li><strong>Load balancing</strong>: Automatic population distribution across selected devices</li>
79
 * <li><strong>Heterogeneous computing</strong>: Utilize both GPU and CPU devices simultaneously</li>
80
 * <li><strong>Fault tolerance</strong>: Graceful degradation when devices become unavailable</li>
81
 * <li><strong>Resource optimization</strong>: Efficient utilization of available compute resources</li>
82
 * </ul>
83
 * 
84
 * <p>Default behavior:
85
 * <ul>
86
 * <li><strong>Platform acceptance</strong>: All platforms accepted by default</li>
87
 * <li><strong>Device acceptance</strong>: All devices accepted by default</li>
88
 * <li><strong>Discovery process</strong>: Automatic enumeration of available hardware</li>
89
 * <li><strong>Validation</strong>: Runtime validation ensures at least one device is selected</li>
90
 * </ul>
91
 * 
92
 * @param <T> the type of fitness values used in the evolutionary algorithm
93
 * @see AbstractEAExecutionContext
94
 * @see Platform
95
 * @see Device
96
 * @see net.bmahe.genetics4j.gpu.GPUFitnessEvaluator
97
 */
98
@Value.Immutable
99
public abstract class GPUEAExecutionContext<T extends Comparable<T>> extends AbstractEAExecutionContext<T> {
100
101
	/**
102
	 * Returns the predicate used to filter OpenCL platforms during device discovery.
103
	 * 
104
	 * <p>Platform filtering allows selective use of OpenCL platforms based on vendor,
105
	 * version, profile, or other platform characteristics. This enables optimization
106
	 * for specific hardware configurations or requirements.
107
	 * 
108
	 * <p>Common filtering criteria:
109
	 * <ul>
110
	 * <li><strong>Profile support</strong>: Filter by FULL_PROFILE vs EMBEDDED_PROFILE</li>
111
	 * <li><strong>Vendor preference</strong>: Select platforms from specific vendors</li>
112
	 * <li><strong>Version requirements</strong>: Ensure minimum OpenCL version support</li>
113
	 * <li><strong>Extension support</strong>: Filter platforms with required extensions</li>
114
	 * </ul>
115
	 * 
116
	 * @return the platform filtering predicate (default accepts all platforms)
117
	 */
118
	@Value.Default
119
	public Predicate<Platform> platformFilters() {
120 3 1. lambda$platformFilters$0 : replaced boolean return with false for net/bmahe/genetics4j/gpu/spec/GPUEAExecutionContext::lambda$platformFilters$0 → NO_COVERAGE
2. platformFilters : replaced return value with null for net/bmahe/genetics4j/gpu/spec/GPUEAExecutionContext::platformFilters → NO_COVERAGE
3. lambda$platformFilters$0 : Substituted 1 with 0 → NO_COVERAGE
		return (platform) -> true;
121
	}
122
123
	/**
124
	 * Returns the predicate used to filter OpenCL devices during device discovery.
125
	 * 
126
	 * <p>Device filtering enables selection of appropriate compute devices based on
127
	 * type, capabilities, memory, and performance characteristics. This allows
128
	 * optimization for specific workload requirements and hardware constraints.
129
	 * 
130
	 * <p>Common filtering criteria:
131
	 * <ul>
132
	 * <li><strong>Device type</strong>: GPU, CPU, ACCELERATOR, or combinations</li>
133
	 * <li><strong>Memory capacity</strong>: Minimum global or local memory requirements</li>
134
	 * <li><strong>Compute units</strong>: Minimum parallel processing capability</li>
135
	 * <li><strong>OpenCL version</strong>: Required feature support level</li>
136
	 * <li><strong>Extensions</strong>: Specific OpenCL extension requirements</li>
137
	 * </ul>
138
	 * 
139
	 * @return the device filtering predicate (default accepts all devices)
140
	 */
141
	@Value.Default
142
	public Predicate<Device> deviceFilters() {
143 3 1. lambda$deviceFilters$1 : replaced boolean return with false for net/bmahe/genetics4j/gpu/spec/GPUEAExecutionContext::lambda$deviceFilters$1 → NO_COVERAGE
2. deviceFilters : replaced return value with null for net/bmahe/genetics4j/gpu/spec/GPUEAExecutionContext::deviceFilters → NO_COVERAGE
3. lambda$deviceFilters$1 : Substituted 1 with 0 → NO_COVERAGE
		return (device) -> true;
144
	}
145
146
	/**
147
	 * Creates a new builder for constructing GPU EA execution contexts.
148
	 * 
149
	 * <p>The builder provides a fluent interface for specifying both core EA execution
150
	 * parameters and GPU-specific device selection criteria. Type safety is ensured
151
	 * through generic parameterization.
152
	 * 
153
	 * @param <U> the type of fitness values for the execution context
154
	 * @return a new builder instance for creating GPU EA execution contexts
155
	 */
156
	public static <U extends Comparable<U>> ImmutableGPUEAExecutionContext.Builder<U> builder() {
157 2 1. builder : removed call to net/bmahe/genetics4j/gpu/spec/ImmutableGPUEAExecutionContext::builder → NO_COVERAGE
2. builder : replaced return value with null for net/bmahe/genetics4j/gpu/spec/GPUEAExecutionContext::builder → NO_COVERAGE
		return ImmutableGPUEAExecutionContext.builder();
158
	}
159
}

Mutations

120

1.1
Location : lambda$platformFilters$0
Killed by : none
replaced boolean return with false for net/bmahe/genetics4j/gpu/spec/GPUEAExecutionContext::lambda$platformFilters$0 → NO_COVERAGE

2.2
Location : platformFilters
Killed by : none
replaced return value with null for net/bmahe/genetics4j/gpu/spec/GPUEAExecutionContext::platformFilters → NO_COVERAGE

3.3
Location : lambda$platformFilters$0
Killed by : none
Substituted 1 with 0 → NO_COVERAGE

143

1.1
Location : lambda$deviceFilters$1
Killed by : none
replaced boolean return with false for net/bmahe/genetics4j/gpu/spec/GPUEAExecutionContext::lambda$deviceFilters$1 → NO_COVERAGE

2.2
Location : deviceFilters
Killed by : none
replaced return value with null for net/bmahe/genetics4j/gpu/spec/GPUEAExecutionContext::deviceFilters → NO_COVERAGE

3.3
Location : lambda$deviceFilters$1
Killed by : none
Substituted 1 with 0 → NO_COVERAGE

157

1.1
Location : builder
Killed by : none
removed call to net/bmahe/genetics4j/gpu/spec/ImmutableGPUEAExecutionContext::builder → NO_COVERAGE

2.2
Location : builder
Killed by : none
replaced return value with null for net/bmahe/genetics4j/gpu/spec/GPUEAExecutionContext::builder → NO_COVERAGE

Active mutators

Tests examined


Report generated by PIT 1.19.6