| 1 | package net.bmahe.genetics4j.gpu.spec; | |
| 2 | ||
| 3 | import java.util.function.Predicate; | |
| 4 | ||
| 5 | import org.immutables.value.Value; | |
| 6 | ||
| 7 | import net.bmahe.genetics4j.core.spec.AbstractEAExecutionContext; | |
| 8 | import net.bmahe.genetics4j.gpu.opencl.model.Device; | |
| 9 | import net.bmahe.genetics4j.gpu.opencl.model.Platform; | |
| 10 | ||
| 11 | /** | |
| 12 | * GPU-specific execution context that extends the core EA framework with OpenCL device selection capabilities. | |
| 13 | * | |
| 14 | * <p>GPUEAExecutionContext extends {@link AbstractEAExecutionContext} to include GPU-specific execution parameters | |
| 15 | * required for OpenCL device discovery and selection. This context combines traditional EA execution settings | |
| 16 | * (population size, termination criteria) with GPU-specific device filtering capabilities. | |
| 17 | * | |
| 18 | * <p>Key GPU-specific additions: | |
| 19 | * <ul> | |
| 20 | * <li><strong>Platform filtering</strong>: Predicates for selecting appropriate OpenCL platforms</li> | |
| 21 | * <li><strong>Device filtering</strong>: Predicates for selecting compatible OpenCL devices</li> | |
| 22 | * <li><strong>Multi-device support</strong>: Automatic discovery and utilization of multiple GPU devices</li> | |
| 23 | * <li><strong>Hardware abstraction</strong>: Device-agnostic configuration with runtime device selection</li> | |
| 24 | * </ul> | |
| 25 | * | |
| 26 | * <p>Device selection workflow: | |
| 27 | * <ol> | |
| 28 | * <li><strong>Platform discovery</strong>: Enumerate all available OpenCL platforms</li> | |
| 29 | * <li><strong>Platform filtering</strong>: Apply platform predicates to select compatible platforms</li> | |
| 30 | * <li><strong>Device enumeration</strong>: Discover devices for each selected platform</li> | |
| 31 | * <li><strong>Device filtering</strong>: Apply device predicates to select suitable devices</li> | |
| 32 | * <li><strong>Context creation</strong>: Create OpenCL contexts for selected devices</li> | |
| 33 | * </ol> | |
| 34 | * | |
| 35 | * <p>Common filtering patterns: | |
| 36 | * | |
| 37 | * <pre>{@code | |
| 38 | * // Select only GPU devices with sufficient memory | |
| 39 | * GPUEAExecutionContext<Double> context = GPUEAExecutionContext.<Double>builder() | |
| 40 | * .populationSize(2000) | |
| 41 | * .termination(Generations.of(100)) | |
| 42 | * | |
| 43 | * // Platform filtering - prefer full OpenCL profiles | |
| 44 | * .platformFilter(platform -> platform.profile() == PlatformProfile.FULL_PROFILE) | |
| 45 | * | |
| 46 | * // Device filtering - GPU devices with at least 2GB memory | |
| 47 | * .deviceFilter(device -> device.type() == DeviceType.GPU && device.globalMemSize() >= 2L * 1024 * 1024 * 1024) | |
| 48 | * | |
| 49 | * .build(); | |
| 50 | * | |
| 51 | * // Select any available compute device (GPUs or CPUs) | |
| 52 | * GPUEAExecutionContext<Double> flexibleContext = GPUEAExecutionContext.<Double>builder() | |
| 53 | * .populationSize(1000) | |
| 54 | * .termination(FitnessTarget.of(0.95)) | |
| 55 | * | |
| 56 | * // Accept any platform | |
| 57 | * .platformFilter(platform -> true) | |
| 58 | * | |
| 59 | * // Prefer GPUs but accept CPUs as fallback | |
| 60 | * .deviceFilter(device -> device.type() == DeviceType.GPU || device.type() == DeviceType.CPU) | |
| 61 | * | |
| 62 | * .build(); | |
| 63 | * }</pre> | |
| 64 | * | |
| 65 | * <p>Performance optimization through device selection: | |
| 66 | * <ul> | |
| 67 | * <li><strong>Compute capability</strong>: Filter devices by OpenCL version and feature support</li> | |
| 68 | * <li><strong>Memory capacity</strong>: Ensure devices have sufficient memory for population size</li> | |
| 69 | * <li><strong>Compute units</strong>: Prefer devices with more parallel processing units</li> | |
| 70 | * <li><strong>Memory bandwidth</strong>: Select devices optimized for data-intensive operations</li> | |
| 71 | * </ul> | |
| 72 | * | |
| 73 | * <p>Multi-device strategies: | |
| 74 | * <ul> | |
| 75 | * <li><strong>Load balancing</strong>: Automatic population distribution across selected devices</li> | |
| 76 | * <li><strong>Heterogeneous computing</strong>: Utilize both GPU and CPU devices simultaneously</li> | |
| 77 | * <li><strong>Fault tolerance</strong>: Graceful degradation when devices become unavailable</li> | |
| 78 | * <li><strong>Resource optimization</strong>: Efficient utilization of available compute resources</li> | |
| 79 | * </ul> | |
| 80 | * | |
| 81 | * <p>Default behavior: | |
| 82 | * <ul> | |
| 83 | * <li><strong>Platform acceptance</strong>: All platforms accepted by default</li> | |
| 84 | * <li><strong>Device acceptance</strong>: All devices accepted by default</li> | |
| 85 | * <li><strong>Discovery process</strong>: Automatic enumeration of available hardware</li> | |
| 86 | * <li><strong>Validation</strong>: Runtime validation ensures at least one device is selected</li> | |
| 87 | * </ul> | |
| 88 | * | |
| 89 | * @param <T> the type of fitness values used in the evolutionary algorithm | |
| 90 | * @see AbstractEAExecutionContext | |
| 91 | * @see Platform | |
| 92 | * @see Device | |
| 93 | * @see net.bmahe.genetics4j.gpu.GPUFitnessEvaluator | |
| 94 | */ | |
| 95 | @Value.Immutable | |
| 96 | public abstract class GPUEAExecutionContext<T extends Comparable<T>> extends AbstractEAExecutionContext<T> { | |
| 97 | ||
| 98 | /** | |
| 99 | * Returns the predicate used to filter OpenCL platforms during device discovery. | |
| 100 | * | |
| 101 | * <p>Platform filtering allows selective use of OpenCL platforms based on vendor, version, profile, or other | |
| 102 | * platform characteristics. This enables optimization for specific hardware configurations or requirements. | |
| 103 | * | |
| 104 | * <p>Common filtering criteria: | |
| 105 | * <ul> | |
| 106 | * <li><strong>Profile support</strong>: Filter by FULL_PROFILE vs EMBEDDED_PROFILE</li> | |
| 107 | * <li><strong>Vendor preference</strong>: Select platforms from specific vendors</li> | |
| 108 | * <li><strong>Version requirements</strong>: Ensure minimum OpenCL version support</li> | |
| 109 | * <li><strong>Extension support</strong>: Filter platforms with required extensions</li> | |
| 110 | * </ul> | |
| 111 | * | |
| 112 | * @return the platform filtering predicate (default accepts all platforms) | |
| 113 | */ | |
| 114 | @Value.Default | |
| 115 | public Predicate<Platform> platformFilters() { | |
| 116 |
3
1. lambda$platformFilters$0 : replaced boolean return with false for net/bmahe/genetics4j/gpu/spec/GPUEAExecutionContext::lambda$platformFilters$0 → NO_COVERAGE 2. platformFilters : replaced return value with null for net/bmahe/genetics4j/gpu/spec/GPUEAExecutionContext::platformFilters → NO_COVERAGE 3. lambda$platformFilters$0 : Substituted 1 with 0 → NO_COVERAGE |
return (platform) -> true; |
| 117 | } | |
| 118 | ||
| 119 | /** | |
| 120 | * Returns the predicate used to filter OpenCL devices during device discovery. | |
| 121 | * | |
| 122 | * <p>Device filtering enables selection of appropriate compute devices based on type, capabilities, memory, and | |
| 123 | * performance characteristics. This allows optimization for specific workload requirements and hardware constraints. | |
| 124 | * | |
| 125 | * <p>Common filtering criteria: | |
| 126 | * <ul> | |
| 127 | * <li><strong>Device type</strong>: GPU, CPU, ACCELERATOR, or combinations</li> | |
| 128 | * <li><strong>Memory capacity</strong>: Minimum global or local memory requirements</li> | |
| 129 | * <li><strong>Compute units</strong>: Minimum parallel processing capability</li> | |
| 130 | * <li><strong>OpenCL version</strong>: Required feature support level</li> | |
| 131 | * <li><strong>Extensions</strong>: Specific OpenCL extension requirements</li> | |
| 132 | * </ul> | |
| 133 | * | |
| 134 | * @return the device filtering predicate (default accepts all devices) | |
| 135 | */ | |
| 136 | @Value.Default | |
| 137 | public Predicate<Device> deviceFilters() { | |
| 138 |
3
1. lambda$deviceFilters$1 : replaced boolean return with false for net/bmahe/genetics4j/gpu/spec/GPUEAExecutionContext::lambda$deviceFilters$1 → NO_COVERAGE 2. deviceFilters : replaced return value with null for net/bmahe/genetics4j/gpu/spec/GPUEAExecutionContext::deviceFilters → NO_COVERAGE 3. lambda$deviceFilters$1 : Substituted 1 with 0 → NO_COVERAGE |
return (device) -> true; |
| 139 | } | |
| 140 | ||
| 141 | /** | |
| 142 | * Creates a new builder for constructing GPU EA execution contexts. | |
| 143 | * | |
| 144 | * <p>The builder provides a fluent interface for specifying both core EA execution parameters and GPU-specific | |
| 145 | * device selection criteria. Type safety is ensured through generic parameterization. | |
| 146 | * | |
| 147 | * @param <U> the type of fitness values for the execution context | |
| 148 | * @return a new builder instance for creating GPU EA execution contexts | |
| 149 | */ | |
| 150 | public static <U extends Comparable<U>> ImmutableGPUEAExecutionContext.Builder<U> builder() { | |
| 151 |
2
1. builder : removed call to net/bmahe/genetics4j/gpu/spec/ImmutableGPUEAExecutionContext::builder → NO_COVERAGE 2. builder : replaced return value with null for net/bmahe/genetics4j/gpu/spec/GPUEAExecutionContext::builder → NO_COVERAGE |
return ImmutableGPUEAExecutionContext.builder(); |
| 152 | } | |
| 153 | } | |
Mutations | ||
| 116 |
1.1 2.2 3.3 |
|
| 138 |
1.1 2.2 3.3 |
|
| 151 |
1.1 2.2 |