View Javadoc
1   package net.bmahe.genetics4j.core.selection;
2   
3   import java.util.Comparator;
4   import java.util.List;
5   import java.util.Objects;
6   import java.util.random.RandomGenerator;
7   
8   import org.apache.commons.lang3.Validate;
9   import org.apache.logging.log4j.LogManager;
10  import org.apache.logging.log4j.Logger;
11  
12  import net.bmahe.genetics4j.core.Genotype;
13  import net.bmahe.genetics4j.core.Individual;
14  import net.bmahe.genetics4j.core.Population;
15  import net.bmahe.genetics4j.core.spec.AbstractEAConfiguration;
16  import net.bmahe.genetics4j.core.spec.selection.ProportionalTournament;
17  import net.bmahe.genetics4j.core.spec.selection.SelectionPolicy;
18  
19  public class ProportionalTournamentSelector<T extends Comparable<T>> implements Selector<T> {
20  	final static public Logger logger = LogManager.getLogger(ProportionalTournamentSelector.class);
21  
22  	private final SelectionPolicy selectionPolicy;
23  	private final RandomGenerator randomGenerator;
24  
25  	public ProportionalTournamentSelector(final SelectionPolicy _selectionPolicy,
26  			final RandomGenerator _randomGenerator) {
27  		Objects.requireNonNull(_selectionPolicy);
28  		Validate.isInstanceOf(ProportionalTournament.class, _selectionPolicy);
29  		Objects.requireNonNull(_randomGenerator);
30  
31  		this.selectionPolicy = _selectionPolicy;
32  		this.randomGenerator = _randomGenerator;
33  	}
34  
35  	@Override
36  	public Population<T> select(final AbstractEAConfiguration<T> eaConfiguration, final long generation,
37  			final int numIndividuals, final List<Genotype> population, final List<T> fitnessScore) {
38  		Objects.requireNonNull(eaConfiguration);
39  		Objects.requireNonNull(population);
40  		Objects.requireNonNull(fitnessScore);
41  		Validate.isTrue(generation >= 0);
42  		Validate.isTrue(numIndividuals > 0);
43  		Validate.isTrue(population.size() == fitnessScore.size());
44  
45  		@SuppressWarnings("unchecked")
46  		final ProportionalTournament<T> proportionalTournament = (ProportionalTournament<T>) selectionPolicy;
47  		final Comparator<Individual<T>> firstComparator = proportionalTournament.firstComparator();
48  		final Comparator<Individual<T>> secondComparator = proportionalTournament.secondComparator();
49  		final int numCandidates = proportionalTournament.numCandidates();
50  		final double proportionFirst = proportionalTournament.proportionFirst();
51  
52  		final Comparator<Individual<T>> firstComparatorOptimize = switch (eaConfiguration.optimization()) {
53  			case MAXIMIZE -> firstComparator;
54  			case MINIMIZE -> firstComparator.reversed();
55  		};
56  
57  		final Comparator<Individual<T>> secondComparatorOptimize = switch (eaConfiguration.optimization()) {
58  			case MAXIMIZE -> secondComparator;
59  			case MINIMIZE -> secondComparator.reversed();
60  		};
61  
62  		logger.debug("Selecting {} individuals", numIndividuals);
63  
64  		final Population<T> selectedIndividuals = new Population<>();
65  
66  		while (selectedIndividuals.size() < numIndividuals) {
67  
68  			final Comparator<Individual<T>> comparator = randomGenerator.nextDouble() < proportionFirst
69  					? firstComparatorOptimize
70  					: secondComparatorOptimize;
71  
72  			final Individual<T> selected = randomGenerator.ints(numCandidates, 0, population.size())
73  					.boxed()
74  					.map((i) -> Individual.of(population.get(i), fitnessScore.get(i)))
75  					.max(comparator)
76  					.get();
77  
78  			selectedIndividuals.add(selected.genotype(), selected.fitness());
79  		}
80  
81  		return selectedIndividuals;
82  	}
83  }