View Javadoc
1   package net.bmahe.genetics4j.core.selection;
2   
3   import java.util.Comparator;
4   import java.util.List;
5   import java.util.random.RandomGenerator;
6   
7   import org.apache.commons.lang3.Validate;
8   import org.apache.logging.log4j.LogManager;
9   import org.apache.logging.log4j.Logger;
10  
11  import net.bmahe.genetics4j.core.Genotype;
12  import net.bmahe.genetics4j.core.Individual;
13  import net.bmahe.genetics4j.core.Population;
14  import net.bmahe.genetics4j.core.spec.AbstractEAConfiguration;
15  import net.bmahe.genetics4j.core.spec.selection.ProportionalTournament;
16  import net.bmahe.genetics4j.core.spec.selection.SelectionPolicy;
17  
18  public class ProportionalTournamentSelector<T extends Comparable<T>> implements Selector<T> {
19  	final static public Logger logger = LogManager.getLogger(ProportionalTournamentSelector.class);
20  
21  	private final SelectionPolicy selectionPolicy;
22  	private final RandomGenerator randomGenerator;
23  
24  	public ProportionalTournamentSelector(final SelectionPolicy _selectionPolicy,
25  			final RandomGenerator _randomGenerator) {
26  		Validate.notNull(_selectionPolicy);
27  		Validate.isInstanceOf(ProportionalTournament.class, _selectionPolicy);
28  		Validate.notNull(_randomGenerator);
29  
30  		this.selectionPolicy = _selectionPolicy;
31  		this.randomGenerator = _randomGenerator;
32  	}
33  
34  	@Override
35  	public Population<T> select(final AbstractEAConfiguration<T> eaConfiguration, final int numIndividuals,
36  			final List<Genotype> population, final List<T> fitnessScore) {
37  		Validate.notNull(eaConfiguration);
38  		Validate.notNull(population);
39  		Validate.notNull(fitnessScore);
40  		Validate.isTrue(numIndividuals > 0);
41  		Validate.isTrue(population.size() == fitnessScore.size());
42  
43  		@SuppressWarnings("unchecked")
44  		final ProportionalTournament<T> proportionalTournament = (ProportionalTournament<T>) selectionPolicy;
45  		final Comparator<Individual<T>> firstComparator = proportionalTournament.firstComparator();
46  		final Comparator<Individual<T>> secondComparator = proportionalTournament.secondComparator();
47  		final int numCandidates = proportionalTournament.numCandidates();
48  		final double proportionFirst = proportionalTournament.proportionFirst();
49  
50  		final Comparator<Individual<T>> firstComparatorOptimize = switch (eaConfiguration.optimization()) {
51  			case MAXIMIZE -> firstComparator;
52  			case MINIMIZE -> firstComparator.reversed();
53  		};
54  
55  		final Comparator<Individual<T>> secondComparatorOptimize = switch (eaConfiguration.optimization()) {
56  			case MAXIMIZE -> secondComparator;
57  			case MINIMIZE -> secondComparator.reversed();
58  		};
59  
60  		logger.debug("Selecting {} individuals", numIndividuals);
61  
62  		final Population<T> selectedIndividuals = new Population<>();
63  
64  		while (selectedIndividuals.size() < numIndividuals) {
65  
66  			final Comparator<Individual<T>> comparator = randomGenerator.nextDouble() < proportionFirst
67  					? firstComparatorOptimize
68  					: secondComparatorOptimize;
69  
70  			final Individual<T> selected = randomGenerator.ints(numCandidates, 0, population.size())
71  					.boxed()
72  					.map((i) -> Individual.of(population.get(i), fitnessScore.get(i)))
73  					.max(comparator)
74  					.get();
75  
76  			selectedIndividuals.add(selected.genotype(), selected.fitness());
77  		}
78  
79  		return selectedIndividuals;
80  	}
81  }