View Javadoc
1   package net.bmahe.genetics4j.core.selection;
2   
3   import java.util.Comparator;
4   import java.util.List;
5   import java.util.Objects;
6   import java.util.random.RandomGenerator;
7   
8   import org.apache.commons.lang3.Validate;
9   import org.apache.logging.log4j.LogManager;
10  import org.apache.logging.log4j.Logger;
11  
12  import net.bmahe.genetics4j.core.Genotype;
13  import net.bmahe.genetics4j.core.Individual;
14  import net.bmahe.genetics4j.core.Population;
15  import net.bmahe.genetics4j.core.spec.AbstractEAConfiguration;
16  import net.bmahe.genetics4j.core.spec.selection.SelectionPolicy;
17  import net.bmahe.genetics4j.core.spec.selection.Tournament;
18  
19  public class TournamentSelector<T extends Comparable<T>> implements Selector<T> {
20  	public static final Logger logger = LogManager.getLogger(TournamentSelector.class);
21  
22  	private final SelectionPolicy selectionPolicy;
23  	private final RandomGenerator randomGenerator;
24  
25  	public TournamentSelector(final SelectionPolicy _selectionPolicy, final RandomGenerator _randomGenerator) {
26  		Objects.requireNonNull(_selectionPolicy);
27  		Validate.isInstanceOf(Tournament.class, _selectionPolicy);
28  		Objects.requireNonNull(_randomGenerator);
29  
30  		this.selectionPolicy = _selectionPolicy;
31  		this.randomGenerator = _randomGenerator;
32  	}
33  
34  	@Override
35  	public Population<T> select(final AbstractEAConfiguration<T> eaConfiguration, final long generation,
36  			final int numIndividuals, final List<Genotype> population, final List<T> fitnessScore) {
37  		Objects.requireNonNull(eaConfiguration);
38  		Objects.requireNonNull(population);
39  		Objects.requireNonNull(fitnessScore);
40  		Validate.isTrue(generation >= 0);
41  		Validate.isTrue(numIndividuals > 0);
42  		Validate.isTrue(population.size() == fitnessScore.size());
43  
44  		@SuppressWarnings("unchecked")
45  		final Tournament<T> tournamentSelection = (Tournament<T>) selectionPolicy;
46  
47  		final Comparator<Individual<T>> baseComparator = tournamentSelection.comparator();
48  		final Comparator<Individual<T>> comparator = switch (eaConfiguration.optimization()) {
49  			case MAXIMIZE -> baseComparator;
50  			case MINIMIZE -> baseComparator.reversed();
51  		};
52  
53  		logger.debug("Selecting {} individuals", numIndividuals);
54  
55  		final Population<T> selectedIndividuals = new Population<>();
56  		while (selectedIndividuals.size() < numIndividuals) {
57  
58  			Individual<T> bestIndividual = null;
59  
60  			for (int i = 0; i < tournamentSelection.numCandidates(); i++) {
61  				final int candidateIndex = randomGenerator.nextInt(fitnessScore.size());
62  				final Individual<T> candidate = Individual.of(population.get(candidateIndex),
63  						fitnessScore.get(candidateIndex));
64  
65  				if (bestIndividual == null || comparator.compare(bestIndividual, candidate) < 0) {
66  					bestIndividual = candidate;
67  				}
68  			}
69  
70  			selectedIndividuals.add(bestIndividual);
71  		}
72  
73  		return selectedIndividuals;
74  	}
75  }