1 package net.bmahe.genetics4j.moo.spea2.replacement;
2
3 import java.util.ArrayList;
4 import java.util.Collections;
5 import java.util.Comparator;
6 import java.util.HashMap;
7 import java.util.List;
8 import java.util.Map;
9 import java.util.Map.Entry;
10 import java.util.Objects;
11 import java.util.Set;
12 import java.util.TreeSet;
13 import java.util.function.BiFunction;
14 import java.util.stream.Collectors;
15 import java.util.stream.IntStream;
16
17 import org.apache.commons.lang3.Validate;
18 import org.apache.commons.lang3.time.DurationFormatUtils;
19 import org.apache.commons.lang3.tuple.Pair;
20 import org.apache.logging.log4j.LogManager;
21 import org.apache.logging.log4j.Logger;
22
23 import net.bmahe.genetics4j.core.Genotype;
24 import net.bmahe.genetics4j.core.Population;
25 import net.bmahe.genetics4j.core.replacement.ReplacementStrategyImplementor;
26 import net.bmahe.genetics4j.core.spec.AbstractEAConfiguration;
27 import net.bmahe.genetics4j.moo.spea2.spec.replacement.SPEA2Replacement;
28
29 public class SPEA2ReplacementStrategyImplementor<T extends Comparable<T>> implements ReplacementStrategyImplementor<T> {
30 final static public Logger logger = LogManager.getLogger(SPEA2ReplacementStrategyImplementor.class);
31
32 private final SPEA2Replacement<T> spea2Replacement;
33
34 public SPEA2ReplacementStrategyImplementor(final SPEA2Replacement<T> _spea2Replacement) {
35 this.spea2Replacement = _spea2Replacement;
36 }
37
38 protected double[] computeStrength(final Comparator<T> dominance, final Population<T> population) {
39 Objects.requireNonNull(dominance);
40 Objects.requireNonNull(population);
41 Validate.isTrue(population.size() > 0);
42
43 final double[] strengths = new double[population.size()];
44 for (int i = 0; i < population.size(); i++) {
45 final T fitness = population.getFitness(i);
46
47 strengths[i] = SPEA2Utils.strength(dominance, i, fitness, population);
48 }
49
50 return strengths;
51 }
52
53 protected double[][] computeObjectiveDistances(final BiFunction<T, T, Double> distance,
54 final Population<T> population) {
55 Objects.requireNonNull(distance);
56 Objects.requireNonNull(population);
57 Validate.isTrue(population.size() > 0);
58
59 final double[][] distanceObjectives = new double[population.size()][population.size()];
60
61 for (int i = 0; i < population.size(); i++) {
62 for (int j = 0; j < i; j++) {
63 final Double distanceMeasure = distance.apply(population.getFitness(i), population.getFitness(j));
64 distanceObjectives[i][j] = distanceMeasure;
65 distanceObjectives[j][i] = distanceMeasure;
66 }
67
68 distanceObjectives[i][i] = 0.0;
69 }
70 return distanceObjectives;
71 }
72
73 protected double[] computeRawFitness(final Comparator<T> dominance, final double[] strengths,
74 final Population<T> population) {
75 Objects.requireNonNull(dominance);
76 Objects.requireNonNull(strengths);
77 Objects.requireNonNull(population);
78 Validate.isTrue(population.size() == strengths.length);
79 Validate.isTrue(population.size() > 0);
80
81 final double[] rawFitness = new double[population.size()];
82 for (int i = 0; i < population.size(); i++) {
83 final T fitness = population.getFitness(i);
84
85 rawFitness[i] = SPEA2Utils.rawFitness(dominance, strengths, i, fitness, population);
86 }
87
88 return rawFitness;
89 }
90
91 protected List<List<Pair<Integer, Double>>> computeSortedDistances(final double[][] distanceObjectives,
92 final Population<T> population) {
93 Objects.requireNonNull(distanceObjectives);
94 Objects.requireNonNull(population);
95 Validate.isTrue(population.size() == distanceObjectives.length);
96 Validate.isTrue(population.size() > 0);
97
98 final List<List<Pair<Integer, Double>>> distances = new ArrayList<>();
99 for (int i = 0; i < population.size(); i++) {
100 final T fitness = population.getFitness(i);
101
102 final List<Pair<Integer, Double>> kthDistances = SPEA2Utils
103 .kthDistances(distanceObjectives, i, fitness, population);
104 distances.add(kthDistances);
105
106 }
107 return distances;
108 }
109
110 protected double[] computeDensity(final List<List<Pair<Integer, Double>>> distances, final int k,
111 final Population<T> population) {
112 Objects.requireNonNull(distances);
113 Validate.isTrue(population.size() == distances.size());
114 Validate.isTrue(k > 0);
115 Objects.requireNonNull(population);
116 Validate.isTrue(population.size() > 0);
117
118 final double[] density = new double[population.size()];
119 for (int i = 0; i < population.size(); i++) {
120 density[i] = 1.0d / (distances.get(i)
121 .get(k)
122 .getRight() + 2);
123 }
124
125 return density;
126 }
127
128 protected double[] computeFinalFitness(final double[] rawFitness, final double[] density,
129 final Population<T> population) {
130 Objects.requireNonNull(rawFitness);
131 Objects.requireNonNull(density);
132 Validate.isTrue(rawFitness.length == density.length);
133 Objects.requireNonNull(population);
134 Validate.isTrue(population.size() > 0);
135 Validate.isTrue(population.size() == density.length);
136
137 final double[] finalFitness = new double[population.size()];
138 for (int i = 0; i < population.size(); i++) {
139 finalFitness[i] = rawFitness[i] + density[i];
140 }
141
142 return finalFitness;
143 }
144
145 protected int skipNull(final List<Pair<Integer, Double>> distances, final int i) {
146 Objects.requireNonNull(distances);
147 Validate.isTrue(i >= 0);
148 Validate.isTrue(i <= distances.size());
149
150 int j = i;
151
152 while (j < distances.size() && distances.get(j) == null) {
153 j++;
154 }
155
156 return j;
157 }
158
159 protected List<Integer> computeAdditionalIndividuals(final Set<Integer> selectedIndex, final double[] rawFitness,
160 final Population<T> population, final int numIndividuals) {
161 Objects.requireNonNull(selectedIndex);
162 Objects.requireNonNull(rawFitness);
163 Objects.requireNonNull(population);
164 Validate.isTrue(rawFitness.length == population.size());
165 Validate.isTrue(numIndividuals >= selectedIndex.size());
166
167 if (numIndividuals == selectedIndex.size()) {
168 return Collections.emptyList();
169 }
170
171 final List<Integer> additionalIndividuals = IntStream.range(0, population.size())
172 .boxed()
173 .filter((i) -> selectedIndex.contains(i) == false)
174 .sorted((a, b) -> Double.compare(rawFitness[a], rawFitness[b]))
175 .limit(numIndividuals - selectedIndex.size())
176 .collect(Collectors.toList());
177
178 return additionalIndividuals;
179 }
180
181 protected void truncatePopulation(final List<List<Pair<Integer, Double>>> distances, final Population<T> population,
182 final int numIndividuals, final Set<Integer> selectedIndex) {
183
184 final Map<Integer, List<Pair<Integer, Double>>> selectedDistances = new HashMap<>();
185 final Map<Integer, Map<Integer, Integer>> selectedDistancesIndex = new HashMap<>();
186
187
188
189
190
191
192
193
194
195
196 for (final int index : selectedIndex) {
197
198 final List<Pair<Integer, Double>> kthDistances = distances.get(index)
199 .stream()
200 .filter(p -> selectedIndex.contains(p.getLeft()))
201 .collect(Collectors.toList());
202
203 Validate.isTrue(kthDistances.size() == selectedIndex.size());
204 selectedDistances.put(index, kthDistances);
205
206 for (int i = 0; i < kthDistances.size(); i++) {
207 final Pair<Integer, Double> pair = kthDistances.get(i);
208
209 if (selectedDistancesIndex.containsKey(pair.getKey()) == false) {
210 selectedDistancesIndex.put(pair.getKey(), new HashMap<>());
211 }
212
213 selectedDistancesIndex.get(pair.getKey())
214 .put(index, i);
215 }
216 }
217
218 while (selectedIndex.size() > numIndividuals) {
219
220 int minIndex = -1;
221 List<Pair<Integer, Double>> minDistances = null;
222 for (final int candidateIndex : selectedIndex) {
223
224 if (minIndex < 0) {
225 minIndex = candidateIndex;
226 minDistances = selectedDistances.get(candidateIndex);
227 } else {
228 final List<Pair<Integer, Double>> distancesCandidate = selectedDistances.get(candidateIndex);
229 Validate.isTrue(minDistances.size() == distancesCandidate.size());
230
231 int result = 0;
232 int j = skipNull(minDistances, 0);
233 int l = skipNull(distancesCandidate, 0);
234
235 while (result == 0 && j < minDistances.size() && l < distancesCandidate.size()) {
236
237 result = Double.compare(minDistances.get(j)
238 .getRight(),
239 distancesCandidate.get(l)
240 .getRight());
241
242 j++;
243 j = skipNull(minDistances, j);
244
245 l++;
246 l = skipNull(distancesCandidate, l);
247 }
248
249 if (result > 0) {
250 minIndex = candidateIndex;
251 minDistances = distancesCandidate;
252 }
253 }
254 }
255
256
257
258
259
260 final Map<Integer, Integer> reverseIndex = selectedDistancesIndex.get(minIndex);
261 for (Entry<Integer, Integer> entry : reverseIndex.entrySet()) {
262 final List<Pair<Integer, Double>> distancesToClean = selectedDistances.get(entry.getKey());
263 distancesToClean.set((int) entry.getValue(), null);
264 }
265 for (Map<Integer, Integer> map : selectedDistancesIndex.values()) {
266 map.remove(minIndex);
267 }
268
269 selectedDistancesIndex.remove(minIndex);
270 selectedDistances.remove(minIndex);
271 selectedIndex.remove(minIndex);
272 }
273
274 }
275
276 protected Set<Integer> environmentalSelection(final List<List<Pair<Integer, Double>>> distances,
277 final double[] rawFitness, final double[] finalFitness, final Population<T> population,
278 final int numIndividuals) {
279
280 final Set<Integer> selectedIndex = IntStream.range(0, population.size())
281 .boxed()
282 .filter((i) -> finalFitness[i] < 1)
283 .collect(Collectors.toSet());
284
285 logger.trace("Selected index size: {}", selectedIndex.size());
286
287 if (selectedIndex.size() < numIndividuals) {
288
289 final List<Integer> additionalIndividuals = computeAdditionalIndividuals(selectedIndex,
290 rawFitness,
291 population,
292 numIndividuals);
293
294 logger.trace("Adding {} additional individuals", additionalIndividuals.size());
295 selectedIndex.addAll(additionalIndividuals);
296 }
297
298 if (selectedIndex.size() > numIndividuals) {
299 logger.trace("Need to remove {} individuals", selectedIndex.size() - numIndividuals);
300
301 truncatePopulation(distances, population, numIndividuals, selectedIndex);
302 }
303
304 return selectedIndex;
305 }
306
307 @Override
308 public Population<T> select(final AbstractEAConfiguration<T> eaConfiguration, final long generation,
309 final int numIndividuals, final List<Genotype> population, final List<T> populationScores,
310 final List<Genotype> offsprings, final List<T> offspringScores) {
311 Objects.requireNonNull(eaConfiguration);
312 Validate.isTrue(generation >= 0);
313 Validate.isTrue(numIndividuals > 0);
314 Objects.requireNonNull(population);
315 Objects.requireNonNull(populationScores);
316 Validate.isTrue(population.size() == populationScores.size());
317 Objects.requireNonNull(offsprings);
318 Objects.requireNonNull(offspringScores);
319 Validate.isTrue(offsprings.size() == offspringScores.size());
320
321 final long startTimeNanos = System.nanoTime();
322 logger.debug("Starting with requested {} individuals - {} population - {} offsprings",
323 numIndividuals,
324 population.size(),
325 offsprings.size());
326
327 final Population<T> archive = new Population<>(population, populationScores);
328 final Population<T> offspringPopulation = new Population<>(offsprings, offspringScores);
329
330 final Population<T> combinedPopulation = new Population<>();
331 if (spea2Replacement.deduplicate()
332 .isPresent()) {
333 final Comparator<Genotype> individualDeduplicator = spea2Replacement.deduplicate()
334 .get();
335 final Set<Genotype> seenGenotype = new TreeSet<>(individualDeduplicator);
336
337 for (int i = 0; i < archive.size(); i++) {
338 final Genotype genotype = archive.getGenotype(i);
339
340 if (seenGenotype.add(genotype)) {
341 final T fitness = archive.getFitness(i);
342 combinedPopulation.add(genotype, fitness);
343 }
344 }
345 final int ingestedFromArchive = combinedPopulation.size();
346 logger.debug("Ingested {} individuals from the archive out of the {} available",
347 ingestedFromArchive,
348 archive.size());
349
350 for (int i = 0; i < offspringPopulation.size(); i++) {
351 final Genotype genotype = offspringPopulation.getGenotype(i);
352
353 if (seenGenotype.add(genotype)) {
354 final T fitness = offspringPopulation.getFitness(i);
355 combinedPopulation.add(genotype, fitness);
356 }
357 }
358 if (logger.isDebugEnabled()) {
359 logger.debug("Ingested {} individuals from the offsprings out of the {} available",
360 combinedPopulation.size() - ingestedFromArchive,
361 offspringPopulation.size());
362 }
363
364 } else {
365 combinedPopulation.addAll(archive);
366 combinedPopulation.addAll(offspringPopulation);
367 }
368
369 final Comparator<T> dominance = switch (eaConfiguration.optimization()) {
370 case MAXIMIZE -> spea2Replacement.dominance();
371 case MINIMIZE -> spea2Replacement.dominance()
372 .reversed();
373 };
374
375 final int k = spea2Replacement.k()
376 .orElseGet(() -> (int) Math.sqrt(combinedPopulation.size()));
377 logger.trace("Using k={}", k);
378 Validate.isTrue(k > 0);
379
380
381 final double[] strengths = computeStrength(dominance, combinedPopulation);
382
383 final double[][] distanceObjectives = computeObjectiveDistances(spea2Replacement.distance(), combinedPopulation);
384
385 final double[] rawFitness = computeRawFitness(dominance, strengths, combinedPopulation);
386
387 final List<List<Pair<Integer, Double>>> distances = computeSortedDistances(distanceObjectives,
388 combinedPopulation);
389
390 final double[] density = computeDensity(distances, k, combinedPopulation);
391
392 final double[] finalFitness = computeFinalFitness(rawFitness, density, combinedPopulation);
393
394
395
396 final Set<Integer> selectedIndex = environmentalSelection(distances,
397 rawFitness,
398 finalFitness,
399 combinedPopulation,
400 numIndividuals);
401
402 final Population<T> newPopulation = new Population<>();
403 for (final int i : selectedIndex) {
404 newPopulation.add(combinedPopulation.getGenotype(i), combinedPopulation.getFitness(i));
405 }
406
407 final long endTimeNanos = System.nanoTime();
408 if (logger.isDebugEnabled()) {
409 logger.debug("Finished with {} new population - Computation time: {}",
410 newPopulation.size(),
411 DurationFormatUtils.formatDurationHMS((endTimeNanos - startTimeNanos) / 1_000_000));
412 }
413
414 return newPopulation;
415 }
416 }