1 package net.bmahe.genetics4j.neat.combination;
2
3 import java.util.ArrayList;
4 import java.util.Comparator;
5 import java.util.HashMap;
6 import java.util.HashSet;
7 import java.util.List;
8 import java.util.Map;
9 import java.util.Set;
10 import java.util.random.RandomGenerator;
11
12 import org.apache.commons.lang3.Validate;
13 import org.apache.logging.log4j.LogManager;
14 import org.apache.logging.log4j.Logger;
15
16 import net.bmahe.genetics4j.core.chromosomes.Chromosome;
17 import net.bmahe.genetics4j.core.combination.ChromosomeCombinator;
18 import net.bmahe.genetics4j.core.spec.AbstractEAConfiguration;
19 import net.bmahe.genetics4j.neat.Connection;
20 import net.bmahe.genetics4j.neat.chromosomes.NeatChromosome;
21 import net.bmahe.genetics4j.neat.combination.parentcompare.ChosenOtherChromosome;
22 import net.bmahe.genetics4j.neat.combination.parentcompare.ParentComparisonHandler;
23 import net.bmahe.genetics4j.neat.spec.combination.NeatCombination;
24 import net.bmahe.genetics4j.neat.spec.combination.parentcompare.ParentComparisonPolicy;
25
26 /**
27 * Implements genetic crossover for NEAT (NeuroEvolution of Augmenting Topologies) neural network chromosomes.
28 *
29 * <p>NeatChromosomeCombinator performs innovation-number-based genetic recombination between two neural network
30 * chromosomes, creating offspring that inherit network topology and connection weights from both parents while
31 * preserving the historical tracking essential to the NEAT algorithm.
32 *
33 * <p>NEAT crossover algorithm:
34 * <ol>
35 * <li><strong>Parent comparison</strong>: Determine which parent is "fitter" using comparison policy</li>
36 * <li><strong>Gene alignment</strong>: Match connections by innovation number between parents</li>
37 * <li><strong>Matching genes</strong>: Randomly inherit from either parent (biased by inheritance threshold)</li>
38 * <li><strong>Disjoint genes</strong>: Inherit from fitter parent when innovation ranges overlap</li>
39 * <li><strong>Excess genes</strong>: Inherit from fitter parent beyond other parent's range</li>
40 * <li><strong>Gene re-enabling</strong>: Potentially re-enable disabled genes based on threshold</li>
41 * </ol>
42 *
43 * <p>Key genetic operations:
44 * <ul>
45 * <li><strong>Innovation alignment</strong>: Uses innovation numbers to match corresponding genes</li>
46 * <li><strong>Fitness-biased inheritance</strong>: Favors genes from fitter parent based on inheritance threshold</li>
47 * <li><strong>Gene state management</strong>: Handles enabled/disabled connection states during crossover</li>
48 * <li><strong>Topology preservation</strong>: Ensures offspring have valid network topology</li>
49 * </ul>
50 *
51 * <p>Gene classification:
52 * <ul>
53 * <li><strong>Matching genes</strong>: Same innovation number in both parents, inherit randomly</li>
54 * <li><strong>Disjoint genes</strong>: Innovation number exists in one parent within other's range</li>
55 * <li><strong>Excess genes</strong>: Innovation number beyond other parent's highest innovation</li>
56 * <li><strong>Disabled genes</strong>: May be re-enabled if other parent has enabled version</li>
57 * </ul>
58 *
59 * <p>Common usage patterns:
60 *
61 * <pre>{@code
62 * // Create NEAT chromosome combinator
63 * RandomGenerator randomGen = RandomGenerator.getDefault();
64 * NeatCombination policy = NeatCombination.builder()
65 * .inheritanceThresold(0.7) // 70% bias toward fitter parent
66 * .reenableGeneInheritanceThresold(0.25) // 25% gene re-enabling chance
67 * .parentComparisonPolicy(FitnessComparison.build())
68 * .build();
69 *
70 * ParentComparisonHandler comparisonHandler = new FitnessComparisonHandler();
71 * NeatChromosomeCombinator<Double> combinator = new NeatChromosomeCombinator<>(
72 * randomGen, policy, comparisonHandler
73 * );
74 *
75 * // Perform crossover
76 * NeatChromosome parent1 = // ... first parent
77 * NeatChromosome parent2 = // ... second parent
78 * Double fitness1 = 0.85;
79 * Double fitness2 = 0.72;
80 *
81 * List<Chromosome> offspring = combinator.combine(
82 * eaConfiguration, parent1, fitness1, parent2, fitness2
83 * );
84 * NeatChromosome child = (NeatChromosome) offspring.get(0);
85 * }</pre>
86 *
87 * <p>Inheritance threshold effects:
88 * <ul>
89 * <li><strong>0.5</strong>: Unbiased inheritance, equal probability from both parents</li>
90 * <li><strong>> 0.5</strong>: Bias toward fitter parent, promotes convergence</li>
91 * <li><strong>< 0.5</strong>: Bias toward less fit parent, increases diversity</li>
92 * <li><strong>1.0</strong>: Always inherit from fitter parent (when fitness differs)</li>
93 * </ul>
94 *
95 * <p>Gene re-enabling mechanism:
96 * <ul>
97 * <li><strong>Preservation</strong>: Disabled genes maintain connection topology information</li>
98 * <li><strong>Re-activation</strong>: Chance to re-enable genes that are enabled in other parent</li>
99 * <li><strong>Exploration</strong>: Allows rediscovery of previously disabled connection patterns</li>
100 * <li><strong>Genetic diversity</strong>: Prevents permanent loss of structural information</li>
101 * </ul>
102 *
103 * <p>Duplicate connection prevention:
104 * <ul>
105 * <li><strong>Links cache</strong>: Tracks already included connections to prevent duplicates</li>
106 * <li><strong>Topology validation</strong>: Ensures each connection appears at most once</li>
107 * <li><strong>Cache efficiency</strong>: O(1) lookup for connection existence checking</li>
108 * <li><strong>Memory management</strong>: Cache cleared after each crossover operation</li>
109 * </ul>
110 *
111 * <p>Performance considerations:
112 * <ul>
113 * <li><strong>Linear time complexity</strong>: O(n + m) where n, m are parent connection counts</li>
114 * <li><strong>Innovation sorting</strong>: Leverages pre-sorted connection lists for efficiency</li>
115 * <li><strong>Memory efficiency</strong>: Minimal allocation during crossover</li>
116 * <li><strong>Cache optimization</strong>: Efficient duplicate detection and prevention</li>
117 * </ul>
118 *
119 * @param <T> the fitness value type (typically Double)
120 * @see NeatCombination
121 * @see ParentComparisonHandler
122 * @see NeatChromosome
123 * @see ChromosomeCombinator
124 */
125 public class NeatChromosomeCombinator<T extends Comparable<T>> implements ChromosomeCombinator<T> {
126 public static final Logger logger = LogManager.getLogger(NeatChromosomeCombinator.class);
127
128 private final RandomGenerator randomGenerator;
129 private final NeatCombination neatCombination;
130 private final ParentComparisonHandler parentComparisonHandler;
131
132 /**
133 * Checks whether a connection already exists in the links cache.
134 *
135 * <p>The links cache prevents duplicate connections in the offspring by tracking all connections that have already
136 * been added. This ensures each connection appears at most once in the resulting chromosome.
137 *
138 * @param linksCache cache mapping from-node indices to sets of to-node indices
139 * @param connection connection to check for existence
140 * @return true if connection already exists in cache, false otherwise
141 * @throws IllegalArgumentException if linksCache or connection is null
142 */
143 private boolean linksCacheContainsConnection(final Map<Integer, Set<Integer>> linksCache,
144 final Connection connection) {
145 Validate.notNull(linksCache);
146 Validate.notNull(connection);
147
148 final int fromNodeIndex = connection.fromNodeIndex();
149 final int toNodeIndex = connection.toNodeIndex();
150
151 return linksCache.containsKey(fromNodeIndex) == true && linksCache.get(fromNodeIndex)
152 .contains(toNodeIndex) == true;
153 }
154
155 /**
156 * Adds a connection to the links cache to prevent future duplicates.
157 *
158 * <p>This method records that a connection from the specified source to target node has been added to the offspring,
159 * preventing the same connection from being added again during the crossover process.
160 *
161 * @param linksCache cache mapping from-node indices to sets of to-node indices
162 * @param connection connection to add to the cache
163 * @throws IllegalArgumentException if linksCache or connection is null
164 */
165 private void insertInlinksCache(final Map<Integer, Set<Integer>> linksCache, final Connection connection) {
166 Validate.notNull(linksCache);
167 Validate.notNull(connection);
168
169 final int fromNodeIndex = connection.fromNodeIndex();
170 final int toNodeIndex = connection.toNodeIndex();
171
172 linksCache.computeIfAbsent(fromNodeIndex, k -> new HashSet<>())
173 .add(toNodeIndex);
174 }
175
176 /**
177 * Determines whether a disabled gene should be re-enabled during crossover.
178 *
179 * <p>If the chosen parent has a disabled connection but the other parent has the same connection enabled, there is a
180 * configurable chance to re-enable the connection in the offspring. This mechanism prevents permanent loss of
181 * potentially useful connections.
182 *
183 * @param chosenParent the connection selected for inheritance
184 * @param otherParent the corresponding connection from the other parent
185 * @return true if the disabled connection should be re-enabled, false otherwise
186 * @throws IllegalArgumentException if either connection is null
187 */
188 protected boolean shouldReEnable(final Connection chosenParent, final Connection otherParent) {
189 Validate.notNull(chosenParent);
190 Validate.notNull(otherParent);
191
192 boolean shouldReEnable = false;
193 if (chosenParent.isEnabled() == false && otherParent.isEnabled() == true) {
194 if (randomGenerator.nextDouble() < neatCombination.reenableGeneInheritanceThresold()) {
195 shouldReEnable = true;
196 }
197 }
198
199 return shouldReEnable;
200 }
201
202 /**
203 * Constructs a new NEAT chromosome combinator with the specified components.
204 *
205 * <p>The combinator uses the random generator for stochastic decisions during crossover, the combination policy for
206 * inheritance parameters, and the comparison handler for determining parent fitness relationships.
207 *
208 * @param _randomGenerator random number generator for stochastic crossover decisions
209 * @param _neatCombination crossover policy defining inheritance parameters
210 * @param _parentComparisonHandler handler for comparing parent fitness and determining inheritance bias
211 * @throws IllegalArgumentException if any parameter is null
212 */
213 public NeatChromosomeCombinator(final RandomGenerator _randomGenerator, final NeatCombination _neatCombination,
214 final ParentComparisonHandler _parentComparisonHandler) {
215 Validate.notNull(_randomGenerator);
216 Validate.notNull(_neatCombination);
217 Validate.notNull(_parentComparisonHandler);
218
219 this.randomGenerator = _randomGenerator;
220 this.neatCombination = _neatCombination;
221 this.parentComparisonHandler = _parentComparisonHandler;
222 }
223
224 /**
225 * Performs genetic crossover between two NEAT chromosomes to produce offspring.
226 *
227 * <p>This method implements the NEAT crossover algorithm, aligning genes by innovation number and applying
228 * inheritance rules based on parent fitness and configuration parameters. The result is a single offspring
229 * chromosome that inherits network topology and connection weights from both parents.
230 *
231 * <p>Crossover process:
232 * <ol>
233 * <li>Compare parent fitness to determine inheritance bias</li>
234 * <li>Align genes by innovation number between parents</li>
235 * <li>Process matching genes with random inheritance (biased)</li>
236 * <li>Process disjoint genes based on fitness comparison</li>
237 * <li>Process excess genes from fitter parent</li>
238 * <li>Apply gene re-enabling rules for disabled connections</li>
239 * </ol>
240 *
241 * @param eaConfiguration evolutionary algorithm configuration containing fitness comparator
242 * @param firstChromosome first parent chromosome (must be NeatChromosome)
243 * @param firstParentFitness fitness value of first parent
244 * @param secondChromosome second parent chromosome (must be NeatChromosome)
245 * @param secondParentFitness fitness value of second parent
246 * @return list containing single offspring chromosome
247 * @throws IllegalArgumentException if chromosomes are not NeatChromosome instances or any parameter is null
248 */
249 @Override
250 public List<Chromosome> combine(final AbstractEAConfiguration<T> eaConfiguration, final Chromosome firstChromosome,
251 final T firstParentFitness, final Chromosome secondChromosome, final T secondParentFitness) {
252 Validate.notNull(eaConfiguration);
253 Validate.notNull(firstChromosome);
254 Validate.notNull(firstParentFitness);
255 Validate.isInstanceOf(NeatChromosome.class, firstChromosome);
256 Validate.notNull(secondChromosome);
257 Validate.notNull(secondParentFitness);
258 Validate.isInstanceOf(NeatChromosome.class, secondChromosome);
259
260 final NeatChromosome firstNeatChromosome = (NeatChromosome) firstChromosome;
261 final NeatChromosome secondNeatChromosome = (NeatChromosome) secondChromosome;
262 final Comparator<T> fitnessComparator = eaConfiguration.fitnessComparator();
263 final double inheritanceThresold = neatCombination.inheritanceThresold();
264 final ParentComparisonPolicy parentComparisonPolicy = neatCombination.parentComparisonPolicy();
265
266 final int fitnessComparison = fitnessComparator.compare(firstParentFitness, secondParentFitness);
267 final ChosenOtherChromosome comparedChromosomes = parentComparisonHandler
268 .compare(parentComparisonPolicy, firstNeatChromosome, secondNeatChromosome, fitnessComparison);
269 final NeatChromosome bestChromosome = comparedChromosomes.chosen();
270 final NeatChromosome worstChromosome = comparedChromosomes.other();
271
272 final List<Connection> combinedConnections = new ArrayList<>();
273 final Map<Integer, Set<Integer>> linksCache = new HashMap<>();
274
275 final var bestConnections = bestChromosome.getConnections();
276 final var worstConnections = worstChromosome.getConnections();
277
278 int indexBest = 0;
279 int indexWorst = 0;
280
281 while (indexBest < bestConnections.size() && indexWorst < worstConnections.size()) {
282
283 final var bestConnection = bestConnections.get(indexBest);
284 final var worstConnection = worstConnections.get(indexWorst);
285
286 if (bestConnection.innovation() == worstConnection.innovation()) {
287 /**
288 * If innovation is the same, we pick the connection randomly
289 */
290 var original = bestConnection;
291 var other = worstConnection;
292 if (randomGenerator.nextDouble() < 1 - inheritanceThresold) {
293 original = worstConnection;
294 other = bestConnection;
295 }
296 if (linksCacheContainsConnection(linksCache, original) == false) {
297
298 /**
299 * If the chosen gene is disabled but the other one is enabled, then there is a chance we will re-enable
300 * it
301 */
302 final boolean isEnabled = shouldReEnable(original, other) ? true : original.isEnabled();
303
304 final var childConnection = Connection.builder()
305 .from(original)
306 .isEnabled(isEnabled)
307 .build();
308 combinedConnections.add(childConnection);
309 insertInlinksCache(linksCache, original);
310 }
311 indexBest++;
312 indexWorst++;
313 } else if (bestConnection.innovation() > worstConnection.innovation()) {
314
315 /**
316 * If the fitnesses are equal, then we randomly inherit from the parent Otherwise, we do not inherit from
317 * the lesser gene
318 */
319 if (fitnessComparison == 0 && randomGenerator.nextDouble() < 1.0 - inheritanceThresold) {
320 final var original = worstConnection;
321 if (linksCacheContainsConnection(linksCache, original) == false) {
322 combinedConnections.add(Connection.copyOf(original));
323 insertInlinksCache(linksCache, original);
324 }
325 }
326
327 indexWorst++;
328 } else {
329
330 /**
331 * If the fitnesses are equal, then we randomly inherit from the parent Otherwise, we always inherit from
332 * the better gene
333 */
334
335 if (fitnessComparison != 0 || randomGenerator.nextDouble() < inheritanceThresold) {
336 if (linksCacheContainsConnection(linksCache, bestConnection) == false) {
337 combinedConnections.add(Connection.copyOf(bestConnection));
338 insertInlinksCache(linksCache, bestConnection);
339 }
340 }
341 indexBest++;
342 }
343 }
344
345 /*
346 * Case where the best connection has more genes. It's called excess genes
347 */
348 while (indexBest < bestConnections.size()) {
349 /**
350 * If the fitnesses are equal, then we randomly inherit from the parent Otherwise, we always inherit from the
351 * better gene
352 */
353 if (fitnessComparison != 0 || randomGenerator.nextDouble() < inheritanceThresold) {
354 final var bestConnection = bestConnections.get(indexBest);
355 if (linksCacheContainsConnection(linksCache, bestConnection) == false) {
356 combinedConnections.add(Connection.copyOf(bestConnection));
357 insertInlinksCache(linksCache, bestConnection);
358 }
359
360 }
361 indexBest++;
362 }
363
364 /*
365 * Case where the worst connection has more genes. It's called excess genes. Since we don't inherit when their
366 * fitness aren't equal, it means we can skip the excess genes from the weaker connections. However we will
367 * randomly inherit if their fitnesses are equal
368 */
369 while (fitnessComparison == 0 && indexWorst < worstConnections.size()) {
370 if (randomGenerator.nextDouble() < 1.0 - inheritanceThresold) {
371 final var worstConnection = worstConnections.get(indexWorst);
372 if (linksCacheContainsConnection(linksCache, worstConnection) == false) {
373 combinedConnections.add(Connection.copyOf(worstConnection));
374 insertInlinksCache(linksCache, worstConnection);
375 }
376
377 }
378 indexWorst++;
379 }
380
381 return List.of(new NeatChromosome(bestChromosome.getNumInputs(),
382 bestChromosome.getNumOutputs(),
383 bestChromosome.getMinWeightValue(),
384 bestChromosome.getMaxWeightValue(),
385 combinedConnections));
386 }
387 }