1 package net.bmahe.genetics4j.samples.symbolicregression;
2
3 import static net.bmahe.genetics4j.core.termination.Terminations.ofFitnessAtMost;
4 import static net.bmahe.genetics4j.core.termination.Terminations.ofMaxGeneration;
5 import static net.bmahe.genetics4j.core.termination.Terminations.or;
6
7 import java.io.File;
8 import java.io.IOException;
9 import java.util.Comparator;
10 import java.util.Random;
11
12 import org.apache.commons.cli.CommandLine;
13 import org.apache.commons.cli.CommandLineParser;
14 import org.apache.commons.cli.DefaultParser;
15 import org.apache.commons.cli.HelpFormatter;
16 import org.apache.commons.cli.Options;
17 import org.apache.commons.cli.ParseException;
18 import org.apache.commons.io.FileUtils;
19 import org.apache.commons.lang3.StringUtils;
20 import org.apache.commons.lang3.Validate;
21 import org.apache.logging.log4j.LogManager;
22 import org.apache.logging.log4j.Logger;
23
24 import net.bmahe.genetics4j.core.EASystem;
25 import net.bmahe.genetics4j.core.EASystemFactory;
26 import net.bmahe.genetics4j.core.Fitness;
27 import net.bmahe.genetics4j.core.Genotype;
28 import net.bmahe.genetics4j.core.Individual;
29 import net.bmahe.genetics4j.core.chromosomes.TreeChromosome;
30 import net.bmahe.genetics4j.core.chromosomes.TreeNode;
31 import net.bmahe.genetics4j.core.evolutionlisteners.EvolutionListeners;
32 import net.bmahe.genetics4j.core.spec.EAConfiguration;
33 import net.bmahe.genetics4j.core.spec.EAExecutionContext;
34 import net.bmahe.genetics4j.core.spec.EAExecutionContexts;
35 import net.bmahe.genetics4j.core.spec.EvolutionResult;
36 import net.bmahe.genetics4j.core.spec.Optimization;
37 import net.bmahe.genetics4j.core.spec.replacement.Elitism;
38 import net.bmahe.genetics4j.core.spec.selection.ProportionalTournament;
39 import net.bmahe.genetics4j.gp.Operation;
40 import net.bmahe.genetics4j.gp.math.SimplificationRules;
41 import net.bmahe.genetics4j.gp.program.Program;
42 import net.bmahe.genetics4j.gp.spec.GPEAExecutionContexts;
43 import net.bmahe.genetics4j.gp.spec.chromosome.ProgramTreeChromosomeSpec;
44 import net.bmahe.genetics4j.gp.spec.combination.ProgramRandomCombine;
45 import net.bmahe.genetics4j.gp.spec.mutation.NodeReplacement;
46 import net.bmahe.genetics4j.gp.spec.mutation.ProgramApplyRules;
47 import net.bmahe.genetics4j.gp.spec.mutation.ProgramRandomMutate;
48 import net.bmahe.genetics4j.gp.spec.mutation.ProgramRandomPrune;
49 import net.bmahe.genetics4j.gp.utils.ProgramUtils;
50 import net.bmahe.genetics4j.gp.utils.TreeNodeUtils;
51
52 public class SymbolicRegressionWithProportionalTournament {
53 final static public Logger logger = LogManager.getLogger(SymbolicRegressionWithProportionalTournament.class);
54
55 final static public String PARAM_DEST_CSV = "d";
56 final static public String LONG_PARAM_DEST_CSV = "csv-dest";
57
58 final static public String PARAM_POPULATION_SIZE = "p";
59 final static public String LONG_PARAM_POPULATION_SIZE = "population-size";
60
61 final static public String DEFAULT_DEST_CSV = SymbolicRegressionWithProportionalTournament.class.getSimpleName()
62 + ".csv";
63
64 final static public int DEFAULT_POPULATION_SIZE = 500;
65
66 public static void cliError(final Options options, final String errorMessage) {
67 final HelpFormatter formatter = new HelpFormatter();
68 logger.error(errorMessage);
69 formatter.printHelp(SymbolicRegressionWithProportionalTournament.class.getSimpleName(), options);
70 System.exit(-1);
71 }
72
73 @SuppressWarnings("unchecked")
74 public void run(String csvFilename, int populationSize) {
75 Validate.isTrue(StringUtils.isNotBlank(csvFilename));
76 Validate.isTrue(populationSize > 0);
77
78 final Random random = new Random();
79
80 final Program program = SymbolicRegressionUtils.buildProgram(random);
81
82
83 final Fitness<Double> computeFitness = (genoType) -> {
84 final TreeChromosome<Operation<?>> chromosome = (TreeChromosome<Operation<?>>) genoType.getChromosome(0);
85 final Double[][] inputs = new Double[100][1];
86 for (int i = 0; i < 100; i++) {
87 inputs[i][0] = (i - 50) * 1.2;
88 }
89
90 double mse = 0;
91 for (final Double[] input : inputs) {
92
93 final double x = input[0];
94 final double expected = SymbolicRegressionUtils.evaluate(x);
95 final Object result = ProgramUtils.execute(chromosome, input);
96
97 if (Double.isFinite(expected)) {
98 final Double resultDouble = (Double) result;
99 mse += Double.isFinite(resultDouble) ? (expected - resultDouble) * (expected - resultDouble)
100 : 1_000_000_000;
101 }
102 }
103 return Double.isFinite(mse) ? mse / 100.0d : Double.MAX_VALUE;
104 };
105
106
107
108 final Comparator<Individual<Double>> parsimonyComparator = (a, b) -> {
109 final TreeChromosome<Operation<?>> treeChromosomeA = a.genotype()
110 .getChromosome(0, TreeChromosome.class);
111 final TreeChromosome<Operation<?>> treeChromosomeB = b.genotype()
112 .getChromosome(0, TreeChromosome.class);
113
114 return Integer.compare(treeChromosomeA.getSize(), treeChromosomeB.getSize());
115 };
116
117 final ProportionalTournament<Double> proportionalTournament = ProportionalTournament
118 .of(3, 0.65, Comparator.comparing(Individual::fitness), parsimonyComparator);
119
120
121
122 final var eaConfigurationBuilder = new EAConfiguration.Builder<Double>();
123 eaConfigurationBuilder.chromosomeSpecs(ProgramTreeChromosomeSpec.of(program))
124 .parentSelectionPolicy(proportionalTournament)
125 .replacementStrategy(Elitism.builder()
126 .offspringRatio(0.99)
127 .offspringSelectionPolicy(proportionalTournament)
128 .survivorSelectionPolicy(proportionalTournament)
129 .build())
130 .combinationPolicy(ProgramRandomCombine.build())
131 .mutationPolicies(ProgramRandomMutate.of(0.10),
132 ProgramRandomPrune.of(0.12),
133 NodeReplacement.of(0.05),
134 ProgramApplyRules.of(SimplificationRules.SIMPLIFY_RULES))
135 .optimization(Optimization.MINIMIZE)
136 .termination(or(ofMaxGeneration(200), ofFitnessAtMost(0.00001)))
137 .fitness(computeFitness);
138 final EAConfiguration<Double> eaConfiguration = eaConfigurationBuilder.build();
139
140
141 final var eaExecutionContextBuilder = GPEAExecutionContexts.<Double>forGP(random);
142 EAExecutionContexts.enrichForScalarFitness(eaExecutionContextBuilder);
143
144 eaExecutionContextBuilder.populationSize(populationSize);
145 eaExecutionContextBuilder.numberOfPartitions(Math.max(1,
146 Runtime.getRuntime()
147 .availableProcessors() - 1));
148
149 eaExecutionContextBuilder.addEvolutionListeners(
150 EvolutionListeners.ofLogTopN(logger, 5, Comparator.<Double>reverseOrder(), (genotype) -> {
151 final TreeChromosome<Operation<?>> chromosome = (TreeChromosome<Operation<?>>) genotype.getChromosome(0);
152 final TreeNode<Operation<?>> root = chromosome.getRoot();
153
154 return TreeNodeUtils.toStringTreeNode(root);
155 }),
156 SymbolicRegressionUtils.csvLoggerDouble(csvFilename,
157 evolutionStep -> evolutionStep.fitness(),
158 evolutionStep -> (double) evolutionStep.individual()
159 .getChromosome(0, TreeChromosome.class)
160 .getSize()));
161
162 final EAExecutionContext<Double> eaExecutionContext = eaExecutionContextBuilder.build();
163 final EASystem<Double> eaSystem = EASystemFactory.from(eaConfiguration, eaExecutionContext);
164
165 final EvolutionResult<Double> evolutionResult = eaSystem.evolve();
166 final Genotype bestGenotype = evolutionResult.bestGenotype();
167 final TreeChromosome<Operation<?>> bestChromosome = (TreeChromosome<Operation<?>>) bestGenotype.getChromosome(0);
168 logger.info("Best genotype: {}", bestChromosome.getRoot());
169 logger.info("Best genotype - pretty print: {}", TreeNodeUtils.toStringTreeNode(bestChromosome.getRoot()));
170 }
171
172 public static void main(String[] args) throws IOException {
173
174
175
176
177
178 final CommandLineParser parser = new DefaultParser();
179
180 final Options options = new Options();
181 options.addOption(PARAM_DEST_CSV, LONG_PARAM_DEST_CSV, true, "destination csv file");
182
183 options.addOption(PARAM_POPULATION_SIZE, LONG_PARAM_POPULATION_SIZE, true, "Population size");
184
185 String csvFilename = DEFAULT_DEST_CSV;
186 int populationSize = DEFAULT_POPULATION_SIZE;
187 try {
188 final CommandLine line = parser.parse(options, args);
189
190 if (line.hasOption(PARAM_DEST_CSV)) {
191 csvFilename = line.getOptionValue(PARAM_DEST_CSV);
192 }
193
194 if (line.hasOption(PARAM_POPULATION_SIZE)) {
195 populationSize = Integer.parseInt(line.getOptionValue(PARAM_POPULATION_SIZE));
196 }
197
198 } catch (ParseException exp) {
199 cliError(options, "Unexpected exception:" + exp.getMessage());
200 }
201
202 logger.info("Population size: {}", populationSize);
203
204 logger.info("CSV output located at {}", csvFilename);
205 FileUtils.forceMkdirParent(new File(csvFilename));
206
207 final var symbolicRegression = new SymbolicRegressionWithProportionalTournament();
208 symbolicRegression.run(csvFilename, populationSize);
209 }
210 }