View Javadoc
1   package net.bmahe.genetics4j.samples.symbolicregression;
2   
3   import static net.bmahe.genetics4j.core.termination.Terminations.ofFitnessAtMost;
4   import static net.bmahe.genetics4j.core.termination.Terminations.ofMaxGeneration;
5   import static net.bmahe.genetics4j.core.termination.Terminations.or;
6   
7   import java.io.File;
8   import java.io.IOException;
9   import java.util.Comparator;
10  import java.util.Random;
11  
12  import org.apache.commons.cli.CommandLine;
13  import org.apache.commons.cli.CommandLineParser;
14  import org.apache.commons.cli.DefaultParser;
15  import org.apache.commons.cli.HelpFormatter;
16  import org.apache.commons.cli.Options;
17  import org.apache.commons.cli.ParseException;
18  import org.apache.commons.io.FileUtils;
19  import org.apache.commons.lang3.StringUtils;
20  import org.apache.commons.lang3.Validate;
21  import org.apache.logging.log4j.LogManager;
22  import org.apache.logging.log4j.Logger;
23  
24  import net.bmahe.genetics4j.core.EASystem;
25  import net.bmahe.genetics4j.core.EASystemFactory;
26  import net.bmahe.genetics4j.core.Fitness;
27  import net.bmahe.genetics4j.core.Genotype;
28  import net.bmahe.genetics4j.core.Individual;
29  import net.bmahe.genetics4j.core.chromosomes.TreeChromosome;
30  import net.bmahe.genetics4j.core.chromosomes.TreeNode;
31  import net.bmahe.genetics4j.core.evolutionlisteners.EvolutionListeners;
32  import net.bmahe.genetics4j.core.spec.EAConfiguration;
33  import net.bmahe.genetics4j.core.spec.EAExecutionContext;
34  import net.bmahe.genetics4j.core.spec.EAExecutionContexts;
35  import net.bmahe.genetics4j.core.spec.EvolutionResult;
36  import net.bmahe.genetics4j.core.spec.Optimization;
37  import net.bmahe.genetics4j.core.spec.replacement.Elitism;
38  import net.bmahe.genetics4j.core.spec.selection.ProportionalTournament;
39  import net.bmahe.genetics4j.gp.Operation;
40  import net.bmahe.genetics4j.gp.math.SimplificationRules;
41  import net.bmahe.genetics4j.gp.program.Program;
42  import net.bmahe.genetics4j.gp.spec.GPEAExecutionContexts;
43  import net.bmahe.genetics4j.gp.spec.chromosome.ProgramTreeChromosomeSpec;
44  import net.bmahe.genetics4j.gp.spec.combination.ProgramRandomCombine;
45  import net.bmahe.genetics4j.gp.spec.mutation.NodeReplacement;
46  import net.bmahe.genetics4j.gp.spec.mutation.ProgramApplyRules;
47  import net.bmahe.genetics4j.gp.spec.mutation.ProgramRandomMutate;
48  import net.bmahe.genetics4j.gp.spec.mutation.ProgramRandomPrune;
49  import net.bmahe.genetics4j.gp.utils.ProgramUtils;
50  import net.bmahe.genetics4j.gp.utils.TreeNodeUtils;
51  
52  public class SymbolicRegressionWithProportionalTournament {
53  	final static public Logger logger = LogManager.getLogger(SymbolicRegressionWithProportionalTournament.class);
54  
55  	final static public String PARAM_DEST_CSV = "d";
56  	final static public String LONG_PARAM_DEST_CSV = "csv-dest";
57  
58  	final static public String PARAM_POPULATION_SIZE = "p";
59  	final static public String LONG_PARAM_POPULATION_SIZE = "population-size";
60  
61  	final static public String DEFAULT_DEST_CSV = SymbolicRegressionWithProportionalTournament.class.getSimpleName()
62  			+ ".csv";
63  
64  	final static public int DEFAULT_POPULATION_SIZE = 500;
65  
66  	public static void cliError(final Options options, final String errorMessage) {
67  		final HelpFormatter formatter = new HelpFormatter();
68  		logger.error(errorMessage);
69  		formatter.printHelp(SymbolicRegressionWithProportionalTournament.class.getSimpleName(), options);
70  		System.exit(-1);
71  	}
72  
73  	@SuppressWarnings("unchecked")
74  	public void run(String csvFilename, int populationSize) {
75  		Validate.isTrue(StringUtils.isNotBlank(csvFilename));
76  		Validate.isTrue(populationSize > 0);
77  
78  		final Random random = new Random();
79  
80  		final Program program = SymbolicRegressionUtils.buildProgram(random);
81  
82  		// tag::compute_fitness[]
83  		final Fitness<Double> computeFitness = (genoType) -> {
84  			final TreeChromosome<Operation<?>> chromosome = (TreeChromosome<Operation<?>>) genoType.getChromosome(0);
85  			final Double[][] inputs = new Double[100][1];
86  			for (int i = 0; i < 100; i++) {
87  				inputs[i][0] = (i - 50) * 1.2;
88  			}
89  
90  			double mse = 0;
91  			for (final Double[] input : inputs) {
92  
93  				final double x = input[0];
94  				final double expected = SymbolicRegressionUtils.evaluate(x);
95  				final Object result = ProgramUtils.execute(chromosome, input);
96  
97  				if (Double.isFinite(expected)) {
98  					final Double resultDouble = (Double) result;
99  					mse += Double.isFinite(resultDouble) ? (expected - resultDouble) * (expected - resultDouble)
100 							: 1_000_000_000;
101 				}
102 			}
103 			return Double.isFinite(mse) ? mse / 100.0d : Double.MAX_VALUE;
104 		};
105 		// end::compute_fitness[]
106 
107 		// tag::proportional_tournament[]
108 		final Comparator<Individual<Double>> parsimonyComparator = (a, b) -> {
109 			final TreeChromosome<Operation<?>> treeChromosomeA = a.genotype()
110 					.getChromosome(0, TreeChromosome.class);
111 			final TreeChromosome<Operation<?>> treeChromosomeB = b.genotype()
112 					.getChromosome(0, TreeChromosome.class);
113 
114 			return Integer.compare(treeChromosomeA.getSize(), treeChromosomeB.getSize());
115 		};
116 
117 		final ProportionalTournament<Double> proportionalTournament = ProportionalTournament
118 				.of(3, 0.65, Comparator.comparing(Individual::fitness), parsimonyComparator);
119 		// end::proportional_tournament[]
120 
121 		// tag::ea_config[]
122 		final var eaConfigurationBuilder = new EAConfiguration.Builder<Double>();
123 		eaConfigurationBuilder.chromosomeSpecs(ProgramTreeChromosomeSpec.of(program)) // <1>
124 				.parentSelectionPolicy(proportionalTournament)
125 				.replacementStrategy(Elitism.builder() // <2>
126 						.offspringRatio(0.99)
127 						.offspringSelectionPolicy(proportionalTournament)
128 						.survivorSelectionPolicy(proportionalTournament)
129 						.build())
130 				.combinationPolicy(ProgramRandomCombine.build())
131 				.mutationPolicies(ProgramRandomMutate.of(0.10),
132 						ProgramRandomPrune.of(0.12),
133 						NodeReplacement.of(0.05),
134 						ProgramApplyRules.of(SimplificationRules.SIMPLIFY_RULES))
135 				.optimization(Optimization.MINIMIZE) // <3>
136 				.termination(or(ofMaxGeneration(200), ofFitnessAtMost(0.00001)))
137 				.fitness(computeFitness);
138 		final EAConfiguration<Double> eaConfiguration = eaConfigurationBuilder.build();
139 		// end::ea_config[]
140 
141 		final var eaExecutionContextBuilder = GPEAExecutionContexts.<Double>forGP(random);
142 		EAExecutionContexts.enrichForScalarFitness(eaExecutionContextBuilder);
143 
144 		eaExecutionContextBuilder.populationSize(populationSize);
145 		eaExecutionContextBuilder.numberOfPartitions(Math.max(1,
146 				Runtime.getRuntime()
147 						.availableProcessors() - 1));
148 
149 		eaExecutionContextBuilder.addEvolutionListeners(
150 				EvolutionListeners.ofLogTopN(logger, 5, Comparator.<Double>reverseOrder(), (genotype) -> {
151 					final TreeChromosome<Operation<?>> chromosome = (TreeChromosome<Operation<?>>) genotype.getChromosome(0);
152 					final TreeNode<Operation<?>> root = chromosome.getRoot();
153 
154 					return TreeNodeUtils.toStringTreeNode(root);
155 				}),
156 				SymbolicRegressionUtils.csvLoggerDouble(csvFilename,
157 						evolutionStep -> evolutionStep.fitness(),
158 						evolutionStep -> (double) evolutionStep.individual()
159 								.getChromosome(0, TreeChromosome.class)
160 								.getSize()));
161 
162 		final EAExecutionContext<Double> eaExecutionContext = eaExecutionContextBuilder.build();
163 		final EASystem<Double> eaSystem = EASystemFactory.from(eaConfiguration, eaExecutionContext);
164 
165 		final EvolutionResult<Double> evolutionResult = eaSystem.evolve();
166 		final Genotype bestGenotype = evolutionResult.bestGenotype();
167 		final TreeChromosome<Operation<?>> bestChromosome = (TreeChromosome<Operation<?>>) bestGenotype.getChromosome(0);
168 		logger.info("Best genotype: {}", bestChromosome.getRoot());
169 		logger.info("Best genotype - pretty print: {}", TreeNodeUtils.toStringTreeNode(bestChromosome.getRoot()));
170 	}
171 
172 	public static void main(String[] args) throws IOException {
173 
174 		/**
175 		 * Parse CLI
176 		 */
177 
178 		final CommandLineParser parser = new DefaultParser();
179 
180 		final Options options = new Options();
181 		options.addOption(PARAM_DEST_CSV, LONG_PARAM_DEST_CSV, true, "destination csv file");
182 
183 		options.addOption(PARAM_POPULATION_SIZE, LONG_PARAM_POPULATION_SIZE, true, "Population size");
184 
185 		String csvFilename = DEFAULT_DEST_CSV;
186 		int populationSize = DEFAULT_POPULATION_SIZE;
187 		try {
188 			final CommandLine line = parser.parse(options, args);
189 
190 			if (line.hasOption(PARAM_DEST_CSV)) {
191 				csvFilename = line.getOptionValue(PARAM_DEST_CSV);
192 			}
193 
194 			if (line.hasOption(PARAM_POPULATION_SIZE)) {
195 				populationSize = Integer.parseInt(line.getOptionValue(PARAM_POPULATION_SIZE));
196 			}
197 
198 		} catch (ParseException exp) {
199 			cliError(options, "Unexpected exception:" + exp.getMessage());
200 		}
201 
202 		logger.info("Population size: {}", populationSize);
203 
204 		logger.info("CSV output located at {}", csvFilename);
205 		FileUtils.forceMkdirParent(new File(csvFilename));
206 
207 		final var symbolicRegression = new SymbolicRegressionWithProportionalTournament();
208 		symbolicRegression.run(csvFilename, populationSize);
209 	}
210 }