1 package net.bmahe.genetics4j.samples.symbolicregression;
2
3 import static net.bmahe.genetics4j.core.termination.Terminations.ofFitnessAtMost;
4 import static net.bmahe.genetics4j.core.termination.Terminations.ofMaxGeneration;
5 import static net.bmahe.genetics4j.core.termination.Terminations.or;
6
7 import java.io.File;
8 import java.io.IOException;
9 import java.util.Comparator;
10 import java.util.Random;
11
12 import org.apache.commons.cli.CommandLine;
13 import org.apache.commons.cli.CommandLineParser;
14 import org.apache.commons.cli.DefaultParser;
15 import org.apache.commons.cli.HelpFormatter;
16 import org.apache.commons.cli.Options;
17 import org.apache.commons.cli.ParseException;
18 import org.apache.commons.io.FileUtils;
19 import org.apache.commons.lang3.StringUtils;
20 import org.apache.commons.lang3.Validate;
21 import org.apache.logging.log4j.LogManager;
22 import org.apache.logging.log4j.Logger;
23
24 import net.bmahe.genetics4j.core.EASystem;
25 import net.bmahe.genetics4j.core.EASystemFactory;
26 import net.bmahe.genetics4j.core.Fitness;
27 import net.bmahe.genetics4j.core.Genotype;
28 import net.bmahe.genetics4j.core.chromosomes.TreeChromosome;
29 import net.bmahe.genetics4j.core.chromosomes.TreeNode;
30 import net.bmahe.genetics4j.core.evolutionlisteners.EvolutionListeners;
31 import net.bmahe.genetics4j.core.spec.EAConfiguration;
32 import net.bmahe.genetics4j.core.spec.EAExecutionContext;
33 import net.bmahe.genetics4j.core.spec.EAExecutionContexts;
34 import net.bmahe.genetics4j.core.spec.EvolutionResult;
35 import net.bmahe.genetics4j.core.spec.Optimization;
36 import net.bmahe.genetics4j.core.spec.selection.Tournament;
37 import net.bmahe.genetics4j.gp.Operation;
38 import net.bmahe.genetics4j.gp.math.SimplificationRules;
39 import net.bmahe.genetics4j.gp.postevaluationprocess.TarpeianMethod;
40 import net.bmahe.genetics4j.gp.program.Program;
41 import net.bmahe.genetics4j.gp.spec.GPEAExecutionContexts;
42 import net.bmahe.genetics4j.gp.spec.chromosome.ProgramTreeChromosomeSpec;
43 import net.bmahe.genetics4j.gp.spec.combination.ProgramRandomCombine;
44 import net.bmahe.genetics4j.gp.spec.mutation.NodeReplacement;
45 import net.bmahe.genetics4j.gp.spec.mutation.ProgramApplyRules;
46 import net.bmahe.genetics4j.gp.spec.mutation.ProgramRandomMutate;
47 import net.bmahe.genetics4j.gp.spec.mutation.ProgramRandomPrune;
48 import net.bmahe.genetics4j.gp.utils.ProgramUtils;
49 import net.bmahe.genetics4j.gp.utils.TreeNodeUtils;
50
51 public class SymbolicRegressionWithTarpeianMethod {
52 final static public Logger logger = LogManager.getLogger(SymbolicRegressionWithTarpeianMethod.class);
53
54 final static public String PARAM_DEST_CSV = "d";
55 final static public String LONG_PARAM_DEST_CSV = "csv-dest";
56
57 final static public String PARAM_POPULATION_SIZE = "p";
58 final static public String LONG_PARAM_POPULATION_SIZE = "population-size";
59
60 final static public String DEFAULT_DEST_CSV = SymbolicRegressionWithTarpeianMethod.class.getSimpleName() + ".csv";
61
62 final static public int DEFAULT_POPULATION_SIZE = 500;
63
64 public static void cliError(final Options options, final String errorMessage) {
65 final HelpFormatter formatter = new HelpFormatter();
66 logger.error(errorMessage);
67 formatter.printHelp(SymbolicRegressionWithTarpeianMethod.class.getSimpleName(), options);
68 System.exit(-1);
69 }
70
71 @SuppressWarnings("unchecked")
72 public void run(String csvFilename, int populationSize) {
73 Validate.isTrue(StringUtils.isNotBlank(csvFilename));
74 Validate.isTrue(populationSize > 0);
75
76 final Random random = new Random();
77
78 final Program program = SymbolicRegressionUtils.buildProgram(random);
79
80
81 final Fitness<Double> computeFitness = (genoType) -> {
82 final TreeChromosome<Operation<?>> chromosome = (TreeChromosome<Operation<?>>) genoType.getChromosome(0);
83 final Double[][] inputs = new Double[100][1];
84 for (int i = 0; i < 100; i++) {
85 inputs[i][0] = (i - 50) * 1.2;
86 }
87
88 double mse = 0;
89 for (final Double[] input : inputs) {
90
91 final double x = input[0];
92 final double expected = SymbolicRegressionUtils.evaluate(x);
93 final Object result = ProgramUtils.execute(chromosome, input);
94
95 if (Double.isFinite(expected)) {
96 final Double resultDouble = (Double) result;
97 mse += Double.isFinite(resultDouble) ? (expected - resultDouble) * (expected - resultDouble)
98 : 1_000_000_000;
99 }
100 }
101 return Double.isFinite(mse) ? mse / 100.0 : Double.MAX_VALUE;
102 };
103
104
105
106 final var eaConfigurationBuilder = new EAConfiguration.Builder<Double>();
107 eaConfigurationBuilder.chromosomeSpecs(ProgramTreeChromosomeSpec.of(program))
108 .parentSelectionPolicy(Tournament.of(3))
109 .combinationPolicy(ProgramRandomCombine.build())
110 .mutationPolicies(ProgramRandomMutate.of(0.10),
111 ProgramRandomPrune.of(0.12),
112 NodeReplacement.of(0.05),
113 ProgramApplyRules.of(SimplificationRules.SIMPLIFY_RULES))
114 .optimization(Optimization.MINIMIZE)
115 .postEvaluationProcessor(TarpeianMethod.ofTreeChromosome(random, 0, 0.3, Double.MAX_VALUE))
116 .termination(or(ofMaxGeneration(200), ofFitnessAtMost(0.00001d)))
117 .fitness(computeFitness);
118 final EAConfiguration<Double> eaConfiguration = eaConfigurationBuilder.build();
119
120
121
122 final var eaExecutionContextBuilder = GPEAExecutionContexts.<Double>forGP(random);
123 EAExecutionContexts.enrichForScalarFitness(eaExecutionContextBuilder);
124
125 eaExecutionContextBuilder.populationSize(populationSize);
126 eaExecutionContextBuilder.numberOfPartitions(Math.max(1,
127 Runtime.getRuntime()
128 .availableProcessors() - 1));
129
130 eaExecutionContextBuilder.addEvolutionListeners(
131 EvolutionListeners.ofLogTopN(logger, 5, Comparator.<Double>reverseOrder(), (genotype) -> {
132 final TreeChromosome<Operation<?>> chromosome = genotype.getChromosome(0, TreeChromosome.class);
133 final TreeNode<Operation<?>> root = chromosome.getRoot();
134
135 return TreeNodeUtils.toStringTreeNode(root);
136 }),
137 SymbolicRegressionUtils.csvLoggerDouble(csvFilename,
138 evolutionStep -> evolutionStep.fitness(),
139 evolutionStep -> (double) evolutionStep.individual()
140 .getChromosome(0, TreeChromosome.class)
141 .getSize()));
142
143
144 final EAExecutionContext<Double> eaExecutionContext = eaExecutionContextBuilder.build();
145 final EASystem<Double> eaSystem = EASystemFactory.from(eaConfiguration, eaExecutionContext);
146
147 final EvolutionResult<Double> evolutionResult = eaSystem.evolve();
148 final Genotype bestGenotype = evolutionResult.bestGenotype();
149 final TreeChromosome<Operation<?>> bestChromosome = (TreeChromosome<Operation<?>>) bestGenotype.getChromosome(0);
150 logger.info("Best genotype: {}", bestChromosome.getRoot());
151 logger.info("Best genotype - pretty print: {}", TreeNodeUtils.toStringTreeNode(bestChromosome.getRoot()));
152 }
153
154 public static void main(String[] args) throws IOException {
155
156
157
158
159
160 final CommandLineParser parser = new DefaultParser();
161
162 final Options options = new Options();
163 options.addOption(PARAM_DEST_CSV, LONG_PARAM_DEST_CSV, true, "destination csv file");
164
165 options.addOption(PARAM_POPULATION_SIZE, LONG_PARAM_POPULATION_SIZE, true, "Population size");
166
167 String csvFilename = DEFAULT_DEST_CSV;
168 int populationSize = DEFAULT_POPULATION_SIZE;
169 try {
170 final CommandLine line = parser.parse(options, args);
171
172 if (line.hasOption(PARAM_DEST_CSV)) {
173 csvFilename = line.getOptionValue(PARAM_DEST_CSV);
174 }
175
176 if (line.hasOption(PARAM_POPULATION_SIZE)) {
177 populationSize = Integer.parseInt(line.getOptionValue(PARAM_POPULATION_SIZE));
178 }
179
180 } catch (ParseException exp) {
181 cliError(options, "Unexpected exception:" + exp.getMessage());
182 }
183
184 logger.info("Population size: {}", populationSize);
185
186 logger.info("CSV output located at {}", csvFilename);
187 FileUtils.forceMkdirParent(new File(csvFilename));
188
189 final var symbolicRegression = new SymbolicRegressionWithTarpeianMethod();
190 symbolicRegression.run(csvFilename, populationSize);
191 }
192 }