View Javadoc
1   package net.bmahe.genetics4j.samples.symbolicregression;
2   
3   import static net.bmahe.genetics4j.core.termination.Terminations.ofFitnessAtMost;
4   import static net.bmahe.genetics4j.core.termination.Terminations.ofMaxGeneration;
5   import static net.bmahe.genetics4j.core.termination.Terminations.or;
6   
7   import java.io.File;
8   import java.io.IOException;
9   import java.util.Comparator;
10  import java.util.Random;
11  
12  import org.apache.commons.cli.CommandLine;
13  import org.apache.commons.cli.CommandLineParser;
14  import org.apache.commons.cli.DefaultParser;
15  import org.apache.commons.cli.HelpFormatter;
16  import org.apache.commons.cli.Options;
17  import org.apache.commons.cli.ParseException;
18  import org.apache.commons.io.FileUtils;
19  import org.apache.commons.lang3.StringUtils;
20  import org.apache.commons.lang3.Validate;
21  import org.apache.logging.log4j.LogManager;
22  import org.apache.logging.log4j.Logger;
23  
24  import net.bmahe.genetics4j.core.EASystem;
25  import net.bmahe.genetics4j.core.EASystemFactory;
26  import net.bmahe.genetics4j.core.Fitness;
27  import net.bmahe.genetics4j.core.Genotype;
28  import net.bmahe.genetics4j.core.chromosomes.TreeChromosome;
29  import net.bmahe.genetics4j.core.chromosomes.TreeNode;
30  import net.bmahe.genetics4j.core.evolutionlisteners.EvolutionListeners;
31  import net.bmahe.genetics4j.core.spec.EAConfiguration;
32  import net.bmahe.genetics4j.core.spec.EAExecutionContext;
33  import net.bmahe.genetics4j.core.spec.EAExecutionContexts;
34  import net.bmahe.genetics4j.core.spec.EvolutionResult;
35  import net.bmahe.genetics4j.core.spec.Optimization;
36  import net.bmahe.genetics4j.core.spec.selection.Tournament;
37  import net.bmahe.genetics4j.gp.Operation;
38  import net.bmahe.genetics4j.gp.math.SimplificationRules;
39  import net.bmahe.genetics4j.gp.postevaluationprocess.TarpeianMethod;
40  import net.bmahe.genetics4j.gp.program.Program;
41  import net.bmahe.genetics4j.gp.spec.GPEAExecutionContexts;
42  import net.bmahe.genetics4j.gp.spec.chromosome.ProgramTreeChromosomeSpec;
43  import net.bmahe.genetics4j.gp.spec.combination.ProgramRandomCombine;
44  import net.bmahe.genetics4j.gp.spec.mutation.NodeReplacement;
45  import net.bmahe.genetics4j.gp.spec.mutation.ProgramApplyRules;
46  import net.bmahe.genetics4j.gp.spec.mutation.ProgramRandomMutate;
47  import net.bmahe.genetics4j.gp.spec.mutation.ProgramRandomPrune;
48  import net.bmahe.genetics4j.gp.utils.ProgramUtils;
49  import net.bmahe.genetics4j.gp.utils.TreeNodeUtils;
50  
51  public class SymbolicRegressionWithTarpeianMethod {
52  	final static public Logger logger = LogManager.getLogger(SymbolicRegressionWithTarpeianMethod.class);
53  
54  	final static public String PARAM_DEST_CSV = "d";
55  	final static public String LONG_PARAM_DEST_CSV = "csv-dest";
56  
57  	final static public String PARAM_POPULATION_SIZE = "p";
58  	final static public String LONG_PARAM_POPULATION_SIZE = "population-size";
59  
60  	final static public String DEFAULT_DEST_CSV = SymbolicRegressionWithTarpeianMethod.class.getSimpleName() + ".csv";
61  
62  	final static public int DEFAULT_POPULATION_SIZE = 500;
63  
64  	public static void cliError(final Options options, final String errorMessage) {
65  		final HelpFormatter formatter = new HelpFormatter();
66  		logger.error(errorMessage);
67  		formatter.printHelp(SymbolicRegressionWithTarpeianMethod.class.getSimpleName(), options);
68  		System.exit(-1);
69  	}
70  
71  	@SuppressWarnings("unchecked")
72  	public void run(String csvFilename, int populationSize) {
73  		Validate.isTrue(StringUtils.isNotBlank(csvFilename));
74  		Validate.isTrue(populationSize > 0);
75  
76  		final Random random = new Random();
77  
78  		final Program program = SymbolicRegressionUtils.buildProgram(random);
79  
80  		// tag::compute_fitness[]
81  		final Fitness<Double> computeFitness = (genoType) -> {
82  			final TreeChromosome<Operation<?>> chromosome = (TreeChromosome<Operation<?>>) genoType.getChromosome(0);
83  			final Double[][] inputs = new Double[100][1];
84  			for (int i = 0; i < 100; i++) {
85  				inputs[i][0] = (i - 50) * 1.2;
86  			}
87  
88  			double mse = 0;
89  			for (final Double[] input : inputs) {
90  
91  				final double x = input[0];
92  				final double expected = SymbolicRegressionUtils.evaluate(x);
93  				final Object result = ProgramUtils.execute(chromosome, input);
94  
95  				if (Double.isFinite(expected)) {
96  					final Double resultDouble = (Double) result;
97  					mse += Double.isFinite(resultDouble) ? (expected - resultDouble) * (expected - resultDouble)
98  							: 1_000_000_000;
99  				}
100 			}
101 			return Double.isFinite(mse) ? mse / 100.0 : Double.MAX_VALUE;
102 		};
103 		// end::compute_fitness[]
104 
105 		// tag::ea_config[]
106 		final var eaConfigurationBuilder = new EAConfiguration.Builder<Double>();
107 		eaConfigurationBuilder.chromosomeSpecs(ProgramTreeChromosomeSpec.of(program)) // <1>
108 				.parentSelectionPolicy(Tournament.of(3))
109 				.combinationPolicy(ProgramRandomCombine.build())
110 				.mutationPolicies(ProgramRandomMutate.of(0.10),
111 						ProgramRandomPrune.of(0.12),
112 						NodeReplacement.of(0.05),
113 						ProgramApplyRules.of(SimplificationRules.SIMPLIFY_RULES))
114 				.optimization(Optimization.MINIMIZE) // <2>
115 				.postEvaluationProcessor(TarpeianMethod.ofTreeChromosome(random, 0, 0.3, Double.MAX_VALUE)) // <3>
116 				.termination(or(ofMaxGeneration(200), ofFitnessAtMost(0.00001d)))
117 				.fitness(computeFitness);
118 		final EAConfiguration<Double> eaConfiguration = eaConfigurationBuilder.build();
119 		// end::ea_config[]
120 
121 		// tag::ea_execution_config[]
122 		final var eaExecutionContextBuilder = GPEAExecutionContexts.<Double>forGP(random);
123 		EAExecutionContexts.enrichForScalarFitness(eaExecutionContextBuilder);
124 
125 		eaExecutionContextBuilder.populationSize(populationSize); // <1>
126 		eaExecutionContextBuilder.numberOfPartitions(Math.max(1,
127 				Runtime.getRuntime()
128 						.availableProcessors() - 1));
129 
130 		eaExecutionContextBuilder.addEvolutionListeners(
131 				EvolutionListeners.ofLogTopN(logger, 5, Comparator.<Double>reverseOrder(), (genotype) -> {
132 					final TreeChromosome<Operation<?>> chromosome = genotype.getChromosome(0, TreeChromosome.class);
133 					final TreeNode<Operation<?>> root = chromosome.getRoot();
134 
135 					return TreeNodeUtils.toStringTreeNode(root);
136 				}),
137 				SymbolicRegressionUtils.csvLoggerDouble(csvFilename,
138 						evolutionStep -> evolutionStep.fitness(),
139 						evolutionStep -> (double) evolutionStep.individual()
140 								.getChromosome(0, TreeChromosome.class)
141 								.getSize()));
142 		// end::ea_execution_config[]
143 
144 		final EAExecutionContext<Double> eaExecutionContext = eaExecutionContextBuilder.build();
145 		final EASystem<Double> eaSystem = EASystemFactory.from(eaConfiguration, eaExecutionContext);
146 
147 		final EvolutionResult<Double> evolutionResult = eaSystem.evolve();
148 		final Genotype bestGenotype = evolutionResult.bestGenotype();
149 		final TreeChromosome<Operation<?>> bestChromosome = (TreeChromosome<Operation<?>>) bestGenotype.getChromosome(0);
150 		logger.info("Best genotype: {}", bestChromosome.getRoot());
151 		logger.info("Best genotype - pretty print: {}", TreeNodeUtils.toStringTreeNode(bestChromosome.getRoot()));
152 	}
153 
154 	public static void main(String[] args) throws IOException {
155 
156 		/**
157 		 * Parse CLI
158 		 */
159 
160 		final CommandLineParser parser = new DefaultParser();
161 
162 		final Options options = new Options();
163 		options.addOption(PARAM_DEST_CSV, LONG_PARAM_DEST_CSV, true, "destination csv file");
164 
165 		options.addOption(PARAM_POPULATION_SIZE, LONG_PARAM_POPULATION_SIZE, true, "Population size");
166 
167 		String csvFilename = DEFAULT_DEST_CSV;
168 		int populationSize = DEFAULT_POPULATION_SIZE;
169 		try {
170 			final CommandLine line = parser.parse(options, args);
171 
172 			if (line.hasOption(PARAM_DEST_CSV)) {
173 				csvFilename = line.getOptionValue(PARAM_DEST_CSV);
174 			}
175 
176 			if (line.hasOption(PARAM_POPULATION_SIZE)) {
177 				populationSize = Integer.parseInt(line.getOptionValue(PARAM_POPULATION_SIZE));
178 			}
179 
180 		} catch (ParseException exp) {
181 			cliError(options, "Unexpected exception:" + exp.getMessage());
182 		}
183 
184 		logger.info("Population size: {}", populationSize);
185 
186 		logger.info("CSV output located at {}", csvFilename);
187 		FileUtils.forceMkdirParent(new File(csvFilename));
188 
189 		final var symbolicRegression = new SymbolicRegressionWithTarpeianMethod();
190 		symbolicRegression.run(csvFilename, populationSize);
191 	}
192 }